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Abstract

Advanced meditation such as jhana meditation can produce various altered states of

consciousness (jhanas) and cultivate rewarding psychological qualities including joy,

peace, compassion, and attentional stability. Mapping the neurobiological substrates

of jhana meditation can inform the development and application of advanced medita-

tion to enhance well-being. Only two prior studies have attempted to investigate the

neural correlates of jhana meditation, and the rarity of adept practitioners has largely

restricted the size and extent of these studies. Therefore, examining the consistency

and reliability of observed brain responses associated with jhana meditation can be

valuable. In this study, we aimed to characterize functional magnetic resonance imag-

ing (fMRI) reliability within a single subject over repeated runs in canonical brain net-

works during jhana meditation performed by an adept practitioner over 5 days

(27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus

and several cortical networks, that is, the somatomotor, limbic, default-mode, control,

and temporo-parietal, demonstrated good within-subject reliability across all jhanas.

Additionally, we found that several other relevant brain networks (e.g., attention,

salience) showed noticeable increases in reliability when fMRI measurements were

adjusted for variability in self-reported phenomenology related to jhana meditation.

Overall, we present a preliminary template of reliable brain areas likely underpinning

core neurocognitive elements of jhana meditation, and highlight the utility of neuro-

phenomenological experimental designs for better characterizing neuronal variability

associated with advanced meditative states.

K E YWORD S

7 T functional MRI, advanced meditation, consciousness, intraclass correlation (ICC), jhana,

neurophenomenology, within-subject reliability

1 | INTRODUCTION

The practice of meditation includes a wide range of simple and

advanced attentional training techniques that can profoundly alter an

individual's level of consciousness and degree of awareness

(Laukkonen & Slagter, 2021; Timmermann et al., 2023), de-reify per-

ceptual processes (Giommi et al., 2023; Laukkonen & Slagter, 2021),

and cultivate joy, tranquility, and compassion (Desbordes et al., 2014;

Received: 30 October 2023 Revised: 9 February 2024 Accepted: 10 March 2024

DOI: 10.1002/hbm.26666

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2024;45:e26666. wileyonlinelibrary.com/journal/hbm 1 of 14

https://doi.org/10.1002/hbm.26666

https://orcid.org/0000-0003-3678-0945
mailto:sacchetadmin@mgh.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
https://doi.org/10.1002/hbm.26666
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.26666&domain=pdf&date_stamp=2024-05-10


Hölzel et al., 2011; Woods et al., 2023). Some of these benefits of

meditation likely become stronger, more discernible, and longer-

lasting with meditation expertise, experience, and skilful practice

(Dennison, 2019; Galante et al., 2023; Gunaratana, 1988; Hagerty

et al., 2013; Laukkonen et al., 2023; Woods et al., 2023; Wright

et al., 2023). Additionally, increasing dosage of meditation and mas-

tery of advanced meditation can result in distinct milestones in prac-

tice (Galante et al., 2023), such as voluntary cessations of

consciousness leading to lasting psychological insights and clarity

(Chowdhury et al., 2023; Laukkonen et al., 2023). One advanced med-

itation technique introduced more than 2000 years ago is jhana

(or Dhyana in Sanskrit) meditation (Gunaratana, 1988). This type of

meditation involves sequential stages of highly absorptive and atten-

tive states of mind called jhanas, which are facilitated by skilful pro-

gression in attentional quality, concentrative power, and sensory

attenuation (Dennison, 2019; Laukkonen et al., 2023). Typically, jhana

meditation is classified into eight progressively deeper meditative

states called jhanas (Gunaratana, 1988).

The first four jhanas are termed “form” states. These states

(i.e., J1, J2, J3, J4) involve focus on tangible objects grounded in sen-

sory perception and are often accompanied by bliss/euphoria

(Dennison, 2019; Gunaratana, 1988; Laukkonen et al., 2023). Among

J1, J2, and J3, traversal from one jhana to the next typically involves

shedding of some of the former jhana's undesirable phenomenological

qualities. The subsequent jhanas (i.e., J5, J6, J7, J8) are called “form-

less states” since they are described as involving sensory perception

and encompassing boundless experiences grounded in equanimity

(Gunaratana, 1988; Laukkonen et al., 2023). Consequently, phenome-

nological sampling during “formless” states can be challenging. For fur-

ther context and detailed phenomenological descriptions of each jhana,

refer to work by Brasington (2015), Gunaratana (1988), Sayadaw (2010),

and Shankman (2008b). Systematic investigation of jhana meditation using

high-resolution neuroimaging like functional magnetic resonance imaging

(fMRI) can enable insights into the neural mechanisms underlying the dif-

ferent jhanas and complement existing phenomenological characteriza-

tions of meditative stages (Sparby & Sacchet, 2022). The therapeutic

utility and accessibility of jhana meditation can hence be potentially

enhanced. However, to our knowledge, only two studies have thus far

explored the neurobiological substrates of jhana meditation using fMRI,

one conducted by Hagerty et al. (2013), and another by our research team

(Yang et al., 2023).

Relative to rest, Hagerty et al. (2013) found that jhana meditation

can influence fMRI activity in brain regions associated with sensory

processing (e.g., visual and auditory regions), attentional monitoring

(e.g., anterior cingulate cortex [ACC]), and reward processing

(e.g., medial orbitofrontal cortex [OFC], nucleus accumbens [NAc]).

Yang et al. (2023) found that specific jhanas can influence fMRI

responses in multiple other regions, namely insula, medial prefrontal

cortex (mPFC), dorsolateral prefrontal cortex (DLPFC), cingulate areas,

hippocampus, somatomotor areas, thalamus, brainstem, and cerebel-

lum. Many of these brain regions also constitute canonical brain net-

works widely implicated in self-referential processing (default-mode

network), awareness of bodily sensations (salience network), and

attentional control (control network) during other meditation tech-

niques involving focused attention (Ganesan, Beyer, et al., 2022; Sezer

et al., 2022). Some of these brain systems may underpin key phenom-

enological elements and alterations within jhana meditation, including

sensory deprivation, one-pointed concentration, euphoria, and equa-

nimity (Yang et al., 2023).

The sparsity of fMRI literature on jhana meditation may be due, in

part, to limited availability of highly skilled meditation experts who can

reliably evoke distinct jhanas volitionally and repeatably under experi-

mentally controlled conditions (Dennison, 2019; Hagerty et al., 2013;

Yang et al., 2023). The high proficiency necessary to evoke such com-

plex and rare mental states thus highlight the utility of longitudinal

single-subject study designs for brain mapping of advanced meditation.

Such study designs involve repeatedly scanning a single eligible and

willing subject under similar experimental conditions over many days,

months, or years (Kajimura et al., 2020; Poldrack et al., 2015; Yang

et al., 2023). With the advent of ultra-high field 7 Tesla fMRI, the reli-

ability and quality of single-subject longitudinal case-studies for com-

plex tasks such as advanced meditation can be bolstered, as 7 Tesla

fMRI offers superior neuroanatomical resolution, statistical power, and

signal quality across the whole brain compared to its counterparts

(i.e., 3 Tesla or 1.5 Tesla) (Hale et al., 2010; Pohmann et al., 2016;

Torrisi et al., 2018; Trattnig et al., 2018; Viessmann & Polimeni, 2021).

Although single-subject experimental designs do not provide insight

into generalizability of findings, they permit dense longitudinal pheno-

typing that uniquely enables systematic examination of dynamics and

consistency of brain responses over time under repeated presentations

of similar task demands or conditions (Poldrack et al., 2015).

Consistency (or reliability) of fMRI responses under repeated

measurements can be quantified using intraclass correlation coeffi-

cients (ICC) (G. Chen et al., 2018; Noble et al., 2021). Typically, ICC is

computed as the proportion of total measured variance in fMRI

responses that belongs to variability between subjects in multi-subject

study designs. Recent meta-analytic evidence found that reliability in

the context of human fMRI literature has generally been low, espe-

cially with functional connectivity (Noble et al., 2019) and task-fMRI

measures (Elliott et al., 2020). Therefore, given the complexity associ-

ated with jhana meditation, reliability assessments can be invaluable

to examine whether it is feasible to replicate complex states of con-

sciousness (jhanas) inside an MRI scanner. Without estimates of reli-

ability, the practical utility of an observed correspondence (validity)

between a specific brain network and jhana would remain limited

(Bennett & Miller, 2010; Noble et al., 2019), thus constraining the

scope of neurobiological inferences associated with advanced medita-

tion. Therefore, assessing reliability (e.g., ICC estimates of regional

homogeneity [ReHo] values) in addition to functional relevance

(e.g., ReHo values) of brain areas can be instrumental for precise and

robust functional brain mapping of jhana meditation.

Given the limited and small neuroimaging literature in jhana medi-

tation, it can be challenging to establish the most consistent and reli-

able brain responses associated with jhanas, without an available

approach for within-subject fMRI reliability assessments. So far, ICC

has largely been applied in the context of multi-subject study designs

2 of 14 GANESAN ET AL.

 10970193, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26666, W
iley O

nline L
ibrary on [10/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



to measure reliability (G. Chen et al., 2018; Noble et al., 2021), thus

highlighting the need for modified ICC implementations that facilitate

reliability assessments in single-subject fMRI studies. ICC can be cal-

culated from a variety of fMRI measures including percent signal

change, t-statistics, beta coefficients, connectivity, and ReHo (Noble

et al., 2021).

ReHo is a measure of functional synchronization between voxels

and their neighbors (Zang et al., 2004), reflecting the extent of local

functional integration and underlying activity among brain areas

(Jiang & Zuo, 2016). ReHo values can thereby illuminate the most

important functional hubs within whole-brain functional connectomes

associated with specific mental states (Jiang & Zuo, 2016). Compared

to several other fMRI indices, ReHo has shown superior reproducibil-

ity and stability across repeated measurements in resting-state fMRI,

due to robustness to non-neural intraindividual variability (X. Chen

et al., 2018; Li et al., 2012; Zuo & Xing, 2014). Consequently, mapping

ReHo of distinct jhanas can illuminate crucial hubs of brain regions

and networks that are more likely associated with subtle phenomeno-

logical elements of rare consciousness states, and less influenced by

artifacts and other non-specific effects. Importantly, identifying brain

areas with highly stable ReHo values across repeated measurements

of jhanas can further highlight the most reliable and replicable hubs of

neurobiology associated with each jhana, which may underpin certain

core characteristics of jhana phenomenology. In other words, maps of

ReHo reliability hotspots could potentially serve as brain templates

and priors that can improve statistical power of future neuroimaging

studies of jhana meditation, especially considering the infancy of jhana

neuroimaging. Brain networks with high reliability estimates in specific

jhanas imply stable associations with specific qualities of those jhanas,

which can thereby improve the statistical likelihood of detecting

effects in these a priori-defined networks with small samples (Zuo

et al., 2019) prevalent in neuroimaging of rare states. While previous

work using the single-subject 7 T fMRI dataset by Yang et al. (2023)

has characterized a comprehensive preliminary brain map of relevant

brain areas associated with the eight jhanas and their phenomenology,

the current work specifically utilizes the aspect of intensive sampling in

the dataset to evaluate reliability and consistency of the observed brain

responses when distinct jhanas are repeatedly evoked over time.

Our primary aim was to evaluate the reliability of ReHo at the

level of canonical brain networks and groups across the whole brain in

each jhana, using a modified ICC implementation suitable for within-

subject longitudinal studies. We hypothesized that various brain net-

works and areas, including those previously implicated in jhana medi-

tation (i.e., default-mode network, salience network, control network,

thalamus, OFC, cerebellum, and brainstem), would demonstrate high

reliability during different jhanas. Since fMRI activity and ReHo in spe-

cific brain areas can exhibit distinct patterns of change across jhanas

(Hagerty et al., 2013; Yang et al., 2023), we additionally explored how

reliability differed between jhanas.

Focused attention is a foundational element of jhana meditation

(Gunaratana, 1988), and attentional qualities can influence ReHo

within insula, DLPFC, mPFC, OFC, thalamus, hippocampus, and visual

cortex (Yang et al., 2023). Incorporating subjective phenomenological

measures into neuroimaging models can potentially improve explana-

tory and statistical power (Timmermann et al., 2023). Therefore, our

second aim was to examine how and whether controlling for relevant

phenomenological measures may impact our findings. We hypothe-

sized that controlling for phenomenology prior to ICC calculations

would improve within-subject ReHo reliability.

2 | METHODOLOGY

2.1 | Data characteristics

2.1.1 | Case-study subject

This case study involved one adept meditator (age = 51 years)

extensively trained in jhana meditation, with 26 years of cumula-

tive lifetime meditation experience (estimated daily and retreat

practice of 23,000 hours) (refer to Yang et al. (2023) for further

details). The subject provided informed consent, and did not meet

criteria for any neuropsychiatric (measured through Mini-

International Neuropsychiatric Interview; Sheehan et al., 1998) or

cognitive (measured through Mini-Mental State Examination;

Folstein et al., 1975) impairments. The study was approved by the

Mass General Brigham IRB.

2.1.2 | MRI acquisition

Whole-brain fMRI BOLD data was acquired from the case-study sub-

ject (N = 1) on 5 consecutive days using 7 Tesla MRI scanner

(Siemens Magnetom Terra) with a 32-channel head coil (repetition

time [TR] = 2.9 s, echo time [TE] = 30 ms, flip angle = 75�, field of

view [FOV] = 189 � 255 mm, parallel imaging GRAPPA factor = 3,

isotropic voxel size = 1.1 mm, 126 slices). Concordant physiological

signals (i.e., cardiac activity using pulse oximetry and respiration using

breathing bellows) were also acquired during fMRI scanning. Whole-

brain T1-weighted structural images were acquired with TR = 2.53 s,

TE = 1.65 ms, flip angle = 7�, isotropic voxel size = 0.8 mm, FOV =

240 � 240 mm, and GRAPPA factor = 2.

Further details on data acquisition parameters and complete

experimental design have been presented elsewhere (see Yang

et al., 2023). Briefly, the subject was scanned during different

tasks which included jhana meditation with their eyes closed. For

our analyses here, we included the fMRI runs that were recorded

specifically during jhana meditation (i.e., k = 27 fMRI runs). Within

each such fMRI run (jhana meditation duration = 512 ± 127 s),

sequential jhanas (J1 to J5) were segmented based on self-

reported transitions (button presses). Note that transitions involv-

ing “formless” jhanas J6 to J8 could not be reported since the pro-

cess of self-reporting is typically antagonistic to the progression

of these advanced absorptive meditative states. Consequently, for

analyses reported hereafter, data from J6 to J8 were merged as

one advanced jhana J6-J8.
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2.1.3 | Self-reported phenomenological ratings

After every fMRI run of jhana meditation, the subject provided

ratings from 1 to 10 for various phenomenological aspects of their

meditation in the MRI scanner. Out of the different phenomenological

items examined across the different jhanas, “stability of attention,”

“width of attention,” and “intensity of jhana” were considered for the

current analyses. These measures aimed to capture the same phenom-

enological quality consistently and comparably across all the jhanas,

unlike the other excluded phenomenological measures that were dis-

tinct to specific jhanas. Consequently, the impact of phenomenology

on ReHo reliability could be examined across all the jhanas equiva-

lently, and also compared between jhanas.

“Stability of attention” ratings were expected to capture the tran-

quility and non-volatility of focused attention during each jhana.

“Width of attention” ratings were expected to indicate the scope of

attentional focus, that is, laser-like narrow focused attention (rated

lower) or broad focused attention encompassing wider attentional

fields (rated higher). “Intensity of jhana” ratings were meant to cap-

ture the intensity of each jhana's characteristic phenomenology (more

intense was rated higher). Further details regarding other general and

state-specific measures that were recorded are presented elsewhere

(Yang et al., 2023).

2.2 | Data analysis

2.2.1 | fMRI preprocessing

fMRI preprocessing was performed using AFNI toolbox. A detailed

description of the preprocessing steps has been provided in Yang

et al. (2023). Briefly, the preprocessing pipeline included skull-

stripping, bias-field correction, de-spiking, physiological artifact cor-

rection using RETROspective Image CORrection (RETROICOR; Glover

et al., 2000; Model predictors—four cardiac, four respiration, one res-

piration volume per time [Birn et al., 2008], and one heart rate [Chang

et al., 2009]), slice-timing correction, magnetic field inhomogeneity

distortion correction, head-motion correction (six standard motion

parameters), fMRI volume scrubbing based on head motion (>0.3 mm

frame-wise displacement and 5% outlier voxels), non-linear registra-

tion between functional, structural, and template (MNI152_2009)

brain images, band-pass filtering (0.01–0.1 Hz), and regression of

average cerebrospinal fluid signal.

2.2.2 | ReHo analysis

ReHo refers to the temporal coherence of BOLD timeseries of a voxel

and its neighboring voxels, that is, local functional connectivity (Zang

et al., 2004). While larger ReHo values indicate greater homogeneity

and functional integration of BOLD responses within a defined brain

area/region, smaller ReHo values suggest greater functional segrega-

tion (Jiang & Zuo, 2016).

ReHo was estimated through Kendall's coefficient of concordance

(KCC), that is, an index of similarity between BOLD timeseries of mul-

tiple neighboring voxels. Whole-brain voxel-wise KCC was calculated

for each voxel with 26 neighboring voxels (within 3 � 3 � 3 voxels

cube space). Consequently, voxel-wise ReHo values were generated

for every segmented jhana within each fMRI run and transformed into

normalized z-scores. The normalized ReHo maps were then smoothed

using a 6 mm full-width half-maximum Gaussian kernel. Subsequently,

the voxel-wise smoothed and normalized ReHo values were averaged

within distinct regions of interest (ROIs) defined by standard brain

atlases that excluded white matter and ventricular brain areas. Specifi-

cally, the Schaefer-400 cortex atlas was used to parcellate cortical

areas (400 ROIs) (Schaefer et al., 2018), the Melbourne S4-subcortex

atlas for subcortical regions (62 ROIs) (Tian et al., 2020), the Bianciardi

brainstem atlas for brainstem (66 ROIs) (Bianciardi et al., 2016), and

the Multi-Domain Task Battery (MDTB) functional cerebellar atlas for

the cerebellum (10 ROIs) (King et al., 2019).

Thus, the whole brain was parcellated into 538 distinct ROIs,

yielding an average ReHo value for each ROI. All cortical ROIs were

grouped into 34 canonical unilateral brain networks (i.e., 17 networks

from each hemisphere), following the well-established functional par-

cellation scheme of Yeo et al. (2011). Subcortical (eight unilateral

groups), cerebellum (1 group), and brainstem (7 groups) ROIs were

grouped based on function and anatomical proximity such that each

group contained at least five regions. For instance, all hippocampal

and thalamic subregions from each hemisphere were grouped based

on functional relatedness into left or right “hippocampus” and

“thalamus,” respectively. On the other hand, caudate and putamen

subregions from each hemisphere were combined based on anatomi-

cal proximity to form left or right “Caudate and putamen” groups with

more than five constituent subregions. The complete list of regions in

each group/network is shown in Table S1 in Data S1. Note that “net-

works” here refers to the canonical cortical networks, while “groups”

refers to the groupings of subcortical, brainstem and cerebellar subre-

gions. Overall, the 538 ROIs/regions were grouped into 50 brain net-

works/groups for subsequent reliability analyses.

2.2.3 | Reliability using brain network intraclass

correlation coefficient (brain network-ICC)

To quantify the reliability of ReHo values associated with each jhana

under repeated fMRI measurements in a single subject, we modified

the commonly used ICC approach. A brief background on the tradi-

tional ICC approach used in multi-subject studies can be found in Sup-

plementary section SS1 in Data S1. ICC values vary between 0 and

1, and can be qualitatively classified as “poor” (ICC < 0.5), “moderate”

(0.5–0.75), “good” (0.75–0.9), and “excellent” (ICC > 0.9) (Koo &

Li, 2016; Liljequist et al., 2019).

The current case-study involves a single subject measured

27 times (i.e., 27 fMRI runs). Therefore, we modified the traditional

ICC approach to enable evaluation of ReHo reliability within a single

subject. We refer to this modified ICC approach as brain network ICC

4 of 14 GANESAN ET AL.
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(Figure 1). For each jhana and each of the 50 brain networks/groups,

we estimated brain network ICC by calculating the proportion of total

variance of ReHo (across runs and regions/ROIs) that is attributed to

variance of ReHo between regions/ROIs constituting the brain net-

work/group (Figure 1a). Consequently, high brain network ICC would

indicate that a larger proportion of the total variability is attributed to

F IGURE 1 Graphical illustration of the proposed approach of estimating brain network intraclass correlation coefficient (ICC). (a) For a canonical

brain network comprising N regions (indicated by different colors on the brain) from a single subject, brain network ICC can be used to estimate

within-subject reliability of fMRI measurements (X) across K repeated fMRI runs measuring a given cognitive state. Each column represents

measurements from a specific fMRI run, and each overlaid red oval represents variability between regions within the run. On the other hand, each

row represents repeated measurements corresponding to a specific region within the brain network, and each overlaid green oval represents

variability within the region (or between runs). Brain network ICC is simply the proportion of total variability attributed to between-region variability

and assumes values between 0 and 1. (b) A hypothetical brain network with high brain network ICC (closer to 1), demonstrating high within-subject

reliability of fMRI measurements across K runs. Narrower green ovals indicate smaller variability within regions/between runs, and broader red ovals

indicate larger variability between regions of a brain network. (c) A hypothetical brain network with low brain network ICC (closer to 0),

demonstrating poor within-subject reliability of fMRI measurements across K runs. Broader green ovals indicate larger within-region/between-run

variability, and the smaller red ovals indicate comparatively smaller between-region variability. fMRI, functional magnetic resonance imaging.

GANESAN ET AL. 5 of 14
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variability between regions within a brain network, and that variability

within regions (i.e., between fMRI runs) is comparatively smaller

(i.e., more reliable) (Figure 1b). A brain network/group with low ICC

would imply larger within-region variance (or larger variability between

fMRI runs) compared to between-region variance (Figure 1c). The

network-level scope of brain network ICC enabled within-subject ICC

calculations, wherein the reliability of each brain network/group across

fMRI runs was evaluated independently.

We estimated brain network ICC in MATLAB (Salarian, 2023)

using the standard mathematical formulation of ICC(A,1) (also referred

to as ICC(2,1)) with two-way mixed effects model, “absolute agree-

ment” type, and “single-rater” definition (G. Chen et al., 2018;

Liljequist et al., 2019). These parameters were found to be most suit-

able for the proposed brain network ICC implementation, as elabo-

rated in Supplementary section SS2 in Data S1.

For each jhana (J1–J5 and merged J6–J8) and each brain net-

work/group, we estimated brain network ICC from the normalized

ReHo values of constituent ROIs. We also computed 95% confidence

interval limits for each estimated brain network ICC through boot-

strapping of runs (5000 permutations). Specifically, for each region

within a network/group, the 27 fMRI runs were randomly sampled

with replacement. Brain network ICC was subsequently estimated

from the ReHo of all regions with resampled fMRI runs within each

network/group. For each network/group, this random resampling and

ICC estimation were repeated 5000 times to determine the 2.5th

and 97.5th percentiles of the ICC estimates (lower and upper limits of

the 95% confidence interval). We then thresholded the brain net-

works/groups at “good” brain network ICC lower confidence limits

(≥0.75) for each jhana separately. Note that brain network ICC

involves single-subject fMRI data. Hence, its range of values and

choice of thresholds cannot be directly compared to that of traditional

group-level fMRI ICC which are generally lower (Elliott et al., 2020;

Noble et al., 2019).

Incorporating relevant explanatory variables during fMRI reliability

assessments can help adequately account for confounding effects that

may be influencing fMRI signal and subsequent reliability estimates

(G. Chen et al., 2018). Therefore, to further evaluate the impact of

between-run variability in self-reported phenomenological measures

(i.e., “stability of attention,” “width of attention,” and “intensity of

jhana”) on ReHo reliability, we repeated the brain network ICC compu-

tations after controlling for these run-wise self-report measures. Specif-

ically, we computed brain network ICC for each brain network/group

using the residual ReHo of linear regressions involving the three self-

report measures. Although there were several other self-report mea-

sures originally acquired in the study (see Yang et al., 2023 for details),

only three of those measures, as mentioned above, captured the same

phenomenological quality consistently and comparably across all the

jhanas. The remaining measures were excluded from the current study

since they were used to assess phenomenology specific to certain indi-

vidual jhanas or groups of jhanas. Excluding these measures enabled

the number and nature of covariates to be consistent for every jhana,

thus promoting interpretability of findings and evaluation of differences

in reliability between distinct jhanas.

Finally, we also repeated the brain network ICC computations

after including the mean framewise displacement (mFD; 1 value

per run in each jhana) as an additional covariate to further eluci-

date the influence of average head motion on ReHo reliability

across runs.

3 | RESULTS

For each jhana, within-subject brain network ICC estimates were com-

puted from region-level ReHo values for each of 50 unilateral brain net-

works/groups spanning all cortical, subcortical, cerebellar, and brain

stem areas. Subsequently, the lower limit of the 95% confidence inter-

val of each ICC estimate was thresholded at “good” reliability (lower

limit ICC ≥ 0.75). Several functional networks/groups within the cortical

and subcortical areas showed above-threshold reliability within each

jhana, with commonalities and distinctions across the jhanas (see

Figure S1 in Data S1 for brain maps of reliability within each individual

jhana, and Figure S2 in Data S1 for the corresponding ReHo maps).

Controlling for phenomenological variability (i.e., attentional stability,

attentional width, and intensity of jhana) between runs led to improve-

ments in reliability within each jhana.

We found no evidence of significant correlation between the ICC

estimates (or their lower confidence limits) and number of regions (N)

within the brain networks/groups in any jhana before and after con-

trolling for phenomenological variability. This suggests that the ICC

values were likely not influenced by the size of brain networks/

groups. Similarly, the correlation between the brain network ICC esti-

mates and average relative standard deviation of normalized ReHo

values across constituent regions of brain networks (measuring

between-region variability) was nonsignificant across jhanas, suggest-

ing minimal or no influence of within-network ReHo variability on ICC

estimates.

3.1 | Common brain networks/groups with above-

threshold reliability in every jhana

Some of the brain networks/groups demonstrated above-threshold

reliability in every jhana (J1–J8) (Figure 2). Specifically, right thalamus,

left somatomotor network A, right default-mode network A, right con-

trol network B, left limbic network B, and right temporal parietal net-

work showed above-threshold brain network ICC estimates across all

the jhanas (Figure 2a,b). Additionally, the average ReHo of the right

thalamus and right temporal parietal network was consistently modest

(ReHo ≥ 0.1) across all jhanas (Figure S2A in Data S1). After control-

ling for between-run phenomenological variability, there were several

additional networks/groups that showed above-threshold brain net-

work ICC estimates across all the jhanas, that is, right central visual

network, right salience ventral attention network A, right control

network A, bilateral control network C, right default-mode network B,

and right default-mode network C (Figure 2c,d). The average ReHo of

left and right control network C was consistently modest (ReHo ≥ 0.1)

6 of 14 GANESAN ET AL.

 10970193, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26666, W
iley O

nline L
ibrary on [10/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



across all jhanas (Figure S2B in Data S1). Additionally controlling for

between-run mFD variability did not produce any new networks/

groups that crossed the threshold in all the jhanas (Figure S3 in

Data S1). However, brain network ICC of the right salience ventral

attention network A dipped slightly below the threshold in jhana J5

alone (Figure S4 in Data S1).

F IGURE 2 Brain surface (cortex) and volume (subcortex) visualizations of brain networks/groups with above-threshold reliability across

jhanas J1–J8, alongside graphical representations of changes in the lower confidence limits of their brain network ICC values across the

sequential jhanas. Note that jhanas J6–J8 were merged as one advanced state. (a) The six brain networks/groups with above-threshold reliability

(ICC lower confidence limit ≥0.75) across jhanas J1 to J8 have been shown on the brain using distinct colors. Each color is labeled in panel (b).

(b) Change in the lower confidence limit of brain network ICC across jhanas in each of the six networks/groups relative to one another, where

ICC change of only the labeled network/group is highlighted (black line) in each graph while the remaining networks/groups are grayed out in the

background. The network/group label above each graph is accompanied by its respective color as shown on the brain map in panel (a). The y-axis

of each graph represents brain network ICC values while the distinct jhanas (J1 to J6–J8) are marked on the x-axes. (c) Similar to (a) showing

13 common brain networks/groups but after controlling the region-level ReHo values for key self-report phenomenological variables (1 value per

fMRI run per jhana) including “Attentional stability,” “Attentional width,” and “jhana intensity.” (d) Similar to (b) after controlling the region-level

ReHo values for the self-report phenomenological variables. The network/group label above each graph is accompanied by its respective color as

shown on the brain map in panel (c). The dotted red line in each graph (in (b) and (d)) represents the threshold of “good” brain network ICC

(i.e., ICC lower confidence limit of 0.75). A, anterior; fMRI, functional magnetic resonance imaging; ICC, intraclass coefficient correlation;

L, left; P, posterior; R, right; ReHo, regional homogeneity.
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3.2 | Brain networks/groups with substantial

variation in reliability across jhanas

Although some brain networks/groups showed above-threshold ReHo

reliability in all jhanas, the reliability of most networks/groups varied

across jhanas. Figure 3 demonstrates all such networks/groups with

above-threshold ICC in at least one but not all jhanas.

Some networks/groups shared common patterns of change in

reliability across multiple jhanas. Specifically, right central visual, right

default-mode C, and left salience ventral attention A networks

showed above-threshold reliability in jhanas J1, J2, J3, and J6–J8;

bilateral control C networks showed above-threshold reliability in all

jhanas but J1; right hippocampus and left salience ventral attention

network B showed above-threshold ICC in J3 only; and left dorsal

attention B and left default-mode C network showed above-threshold

reliability in J6–J8 only (Figure 3b). On the other hand, several net-

works/groups also exhibited distinct patterns of change in reliability

across jhanas. Particularly, left somatomotor network B had above-

threshold ICC in J1, J2, J4, and J6–J8; right salience ventral attention

network A showed above-threshold reliability in J1, J3, J4, and J6–J8;

left default-mode network A had above-threshold ICC in J2, J3, and

J6–J8; right control network A showed above-threshold ICC in J1, J2,

and J6–J8; left default-mode network B had above-threshold ICC in

J1 and J6–J8; and left hippocampus showed above-threshold reliabil-

ity in J2 only (Figure 3b).

After controlling for between-run (or within-region) phenomeno-

logical variability, most networks/groups showed an increase in brain

network ICC, with some crossing the threshold in additional jhanas.

For instance, left dorsal attention network B crossed the threshold in

J2, J3, and J4, left salience ventral attention network B crossed the

threshold in J2, J4, and J6–J8, left default-mode network A crossed

the threshold in J1, left default-mode network B crossed the thresh-

old in J3, left default-mode network C crossed the threshold in J2,

right hippocampus crossed the threshold in J1, and left hippocampus

crossed the threshold in J1 and J6–J8 (Figure 2d vs. Figure 2b).

Few of the networks/groups crossed the reliability threshold

(above-threshold) for the first time in any jhana, only after controlling

for phenomenological variables. These networks/groups include right

somatomotor network B (above-threshold in J6–J8), right dorsal

attention network B (above-threshold in J2 and J6–J8), right limbic

network B (above-threshold in J1), left thalamus (above-threshold in

J1), and left amygdala + globus pallidus + nucleus accumbens (above-

threshold in J2) (Figure 3d). In other words, the reliability of these net-

works/groups was below-threshold in all jhanas, prior to accounting

for phenomenological variability.

Complete individual brain maps of above-threshold reliability

associated with each jhana before and after phenomenological control

can be found in Figure S1 in Data S1, and their corresponding average

ReHo maps are shown in Figure S2 in Data S1. Note that several net-

works with above-threshold reliability after phenomenological control

also had modest average ReHo (ReHo ≥ 0.1) in specific jhanas

(e.g., right control network A in J1, J2, J3, J4, and J6–J8; right control

network B in J1, J2, J3, and J4; left default-mode network B in J1, J3,

and J6–J8; left salience ventral attention network B in J2, J3, J4, and

J6–J8; left default-mode network C in J2 and J6–J8; left default-mode

network A in J3 and J6–J8; and right hippocampus in J3).

Inclusion of mFD as an additional covariate led to an overall

increase in brain network ICC among most networks/groups. How-

ever, following mFD regression, only two cortical networks surpassed

the reliability threshold for the first time in any jhana (J2 and J6–J8),

that is, left limbic network A and left control network B. Similarly, only

the subcortical groups (left thalamus and left amygdala + globus

pallidus +nucleus accumbens) surpassed the threshold in two addi-

tional jhanas, while the cortical groups surpassed the threshold in only

one additional jhana (Figure S4 in Data S1) following mFD regression.

4 | DISCUSSION

We investigated within-subject reliability of ReHo among brain

regions constituting distinct canonical brain networks associated with

different states of jhana meditation in a single adept meditator

(N = 1) using ultrahigh field 7 Tesla fMRI. To accomplish this, we com-

puted brain network ICC, a modified approach of ICC for within-

subject longitudinal fMRI designs, from ReHo estimates across the

whole brain for each demarcated jhana measured 27 times (k = 27)

over 5 days. This is the first study to examine fMRI within-subject reli-

ability associated with distinct jhanas that were intensively sampled.

We found several cortical networks and subcortical areas that

demonstrated good (i.e., above-threshold) reliability (lower confidence

limit ICC ≥0.75) of ReHo in different jhanas. As hypothesized, many of

the key brain areas previously implicated in jhana meditation showed

above-threshold reliability in all jhanas, including primary somatomo-

tor areas (somatomotor network), OFC (limbic network), lateral PFC

and DLPFC areas (control network), mPFC and PCC (default-mode

network), temporoparietal areas (temporal parietal network), and thal-

amus. Notably, average ReHo values of the thalamus and temporal

parietal network were also modest (ReHo ≥ 0.1) in all the jhanas.

There were also several networks/groups that exhibited good reliabil-

ity in specific but not all jhanas. Furthermore, accounting for inter-run

variability in self-reported phenomenology (i.e., attention and depth

of jhanas) increased overall reliability, with several additional net-

works/groups crossing the reliability threshold (i.e., visual, salience,

attentional, and more control and default-mode areas). The average

ReHo of these areas was also consistently modest across multiple

jhanas. Although additionally controlling for inter-run variability in

head motion (mFD) also increased overall reliability across all net-

works/groups, it did not uniquely affect the reliability of specific brain

networks/groups as much.

Our findings hence identify some of the most reliable brain areas

pertinent to jhana meditation, which can subsequently facilitate more

rigorous and precise neuroimaging investigations of jhana meditation

as well as advanced meditation more broadly. Controlling for variabil-

ity in phenomenology relevant to jhana meditation improved reliability

estimates, thereby highlighting the utility of phenomenological sam-

pling to meaningfully explain additional neurobiological variance,
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F IGURE 3 Brain surface (cortex) and volume (subcortex) visualizations of brain networks/groups with above-threshold reliability in at most

five of the six jhanas (where jhanas J6–J8 are merged). Changes in the lower confidence limits of brain network ICC across the jhanas in each of

these distinct networks/groups are depicted graphically alongside their brain maps. (a) The 16 brain networks/groups with above-threshold

reliability (ICC lower confidence limit ≥0.75) in at most five jhanas have been shown on the brain using distinct colors labeled in panel (b).

(b) Change in the lower confidence limit of brain network ICC across jhanas in each of the 16 networks/groups relative to one another, where

ICC change of only the labeled network/group is highlighted (black line) in each graph while the remaining networks/groups are grayed out in the

background. The network/group label above each graph is accompanied by its respective color as shown on the brain map in panel (a). The y-axis

of each graph represents brain network ICC values while the distinct jhanas (J1 to J6–J8) are marked on the x-axes. (c) Similar to (a) showing

14 brain networks/groups after controlling the region-level ReHo values for key self-report phenomenological variables (1 value per fMRI run per

jhana) including “Attentional stability,” “Attentional width,” and “jhana intensity.” (d) Similar to (b) after controlling the region-level ReHo values

for the same self-report phenomenological variables. The network/group label above each graph is accompanied by its respective color as shown

on the brain map in panel (c). In each graph of (b) and (d), the dotted red line represents the threshold of “good” brain network ICC (i.e., ICC lower

confidence limit of 0.75). The green colored points indicate above-threshold ICC (i.e., ICC lower confidence limit ≥0.75) while red colored points

indicate below-threshold ICC (i.e., ICC lower confidence limit <0.75) for a given jhana. A, anterior; fMRI, functional magnetic resonance imaging;

ICC, intraclass coefficient correlation; L, left; P, posterior; R, right; ReHo, regional homogeneity.
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which is potentially associated with subtle fluctuations in actual men-

tal states but typically disregarded as noise. This demonstrates the

importance of incorporating neurophenomenology in the investigation

of advanced meditation practices, as well as contemplative and psy-

chological research broadly. Furthermore, variability in head motion

demonstrated minimal impact on the reliability estimates, thus imply-

ing that the reliabilities of specific networks/groups were less likely

driven by such artifacts.

Broadly, this study demonstrates that advanced meditation states

that are rarely studied in science can indeed be investigated reliably

and rigorously given the appropriate technology and methodology.

The combination of ultra-high field MRI, intensive neurophenomeno-

logical sampling, brain network ICC, and an advanced meditation tech-

nique with defined sequential stages (i.e., jhana meditation) makes the

scientific investigation of complex states of consciousness and their

reliability more amenable.

4.1 | Brain areas showing most reliable

engagement with every jhana

Brain networks/groups demonstrating good ReHo reliability across

every jhana mainly comprise supplementary motor area (SMA) and

primary somatomotor cortex (somatomotor network), OFC (limbic

network), inferior parietal lobe, lateral PFC and DLPFC areas (control

network), mPFC, PCC and precuneus regions (default-mode network),

superior temporal gyri (STG) and temporo-parietal junction (TPJ) (tem-

poral parietal network), and thalamus. Due to their good replicability

across jhanas, consistent implication in previous neuroimaging investi-

gations of jhana meditation (Dennison, 2019; Hagerty et al., 2013;

Yang et al., 2023) as well as general functional relevance to various

elements of jhana meditation, some of these brain networks and

regions likely underpin core characteristics of jhanas.

For instance, it has been shown that jhanas attenuate activity in

brain networks relevant to higher-order thinking and mental proces-

sing, including default-mode, somatomotor, and frontal (Hagerty

et al., 2013). In the current study, we found that these same areas also

demonstrate good ReHo reliability across several repeated instances

of jhana meditation. Similarly, OFC, another region with good within-

subject reliability, has also been previously implicated in jhana medita-

tion for its role in promoting jhanic pleasure and euphoria (Hagerty

et al., 2013; Yang et al., 2023). Therefore, observations of functional

validity (from previous literature) coupled with good reliability (from

the current study) highlight the relevance of these brain areas in sub-

serving fundamental and replicable attributes of jhana meditation.

Specifically, attaining jhanas requires highly focused attention, which

is typically antagonistic to the default-mode of mental processing and

awareness (Dennison, 2019; Ganesan, Beyer, et al., 2022; Ganesan

et al., 2023; Hagerty et al., 2013; Laukkonen & Slagter, 2021; Yang

et al., 2023). Consequently, jhana meditation may robustly influence

BOLD responses within default-mode regions (e.g., PCC, mPFC, precu-

neus) involved in self-referential processing and thought (Raichle, 2015),

within somatomotor areas (e.g., SMA) implicated in internal speech

processing (Hertrich et al., 2016; Kim, 2012; Summerfield et al., 2009),

and in other similar areas (e.g., STG within temporal parietal network

[Chang et al., 2010; Shergill et al., 2002]). Similarly, OFC (within the lim-

bic network) is widely associated with reward-processing, valuation

(Knudsen & Wallis, 2022; Kringelbach, 2005), and mood (Rudebeck &

Rich, 2018), which may consistently contribute toward subjective proces-

sing of euphoria, bodily pleasure, and equanimity associated with jhana

meditation. Although the average ReHo of some of these networks may

be low due to functional specialization and heterogeneity (Jiang &

Zuo, 2016), their higher reliability indicates that the extent of specializa-

tion may be generally consistent during jhana meditation.

Although there are several other areas demonstrating good ReHo

reliability across jhanas, some of which likely subserve vital aspects of

jhana phenomenology (e.g., attentional monitoring by DLFPC [Friehs

et al., 2020; MacDonald et al., 2000], alterations in perception and

awareness by thalamus [Hwang et al., 2017; Müller et al., 2023]), fur-

ther multi-subject neuroimaging studies of jhana meditation are nec-

essary to definitively illuminate the functional validity of all the

reliable brain networks/groups found here.

4.2 | Effect of phenomenology and variations in

reliability across individual jhanas

ReHo of some brain networks/groups demonstrated good reliability in

specific but not all jhanas. In some cases, the sources of run-to-run

variability in ReHo could be attributed to various phenomenological

factors (i.e., attentional depth, attentional width, and intensity of

jhana) that likely influenced the quality and experience of each jhana.

For instance, Yang et al. (2023) observed that ReHo values of

specific brain areas (e.g., visual, parietal, DLPFC, mPFC, insula, and

OFC areas) were significantly associated with self-reported atten-

tional stability, attentional width, and intensity of jhana. Consistent

with these observations, we found that controlling for run-to-run vari-

ability in these phenomenological factors substantially improved reli-

ability in several brain networks/groups (i.e., by decreasing run-to-run

ReHo variability). Specifically, reliability of various visual, dorsal, and

salience ventral attentional (comprising insular, pre- and post-central,

opercular, frontal, OFC areas), control (comprising temporal, parietal,

lateral PFC, ACC areas), and default-mode (mPFC, PCC, precuneus,

temporal, parahippocampus, retrosplenial areas) network regions sur-

passed the threshold in several jhanas only after controlling for the

inter-run variance in these phenomenological attributes. These net-

works also demonstrated modest functional integration (average

ReHo ≥ 0.1) in multiple jhanas. Phenomenological data sampling con-

current to neuronal measurements can hence be valuable in better

characterizing and explaining neuronal dynamics underlying complex

states of consciousness (Timmermann et al., 2023), as well as effec-

tively complementing existing nuanced phenomenological classifica-

tions of meditative states and traits (Sparby & Sacchet, 2022).

Furthermore, controlling for head motion artifacts also appeared to

improve the reliability estimates of few networks/groups, albeit mini-

mally. Therefore, it is important to consider and adequately control
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for these artifactual sources of variation during future neuroimaging

analyses of jhana meditation, as some networks/groups may be

slightly more related to head motion than others (e.g., certain limbic

and control network areas surpassing reliability threshold only after

mFD regression).

Among subcortical regions, after thalamus, the hippocampus

demonstrated the most replicable engagement with jhana meditation

regardless of phenomenological variance, particularly during the form

jhanas (e.g., J1, J2, and J3). These regions may thereby support spe-

cific aspects of memory, cognitive, and perceptual processes integral

to the earlier jhanas. Reliability associated with cerebellar and brain-

stem areas did not surpass the threshold in any jhana, even after

accounting for variance in attentional properties and intensity of

jhana. Involvement of these areas in jhanas may not be as consistent,

or may be partly influenced by variability in other state-specific phe-

nomenological elements (e.g., joy in J2, equanimity in J4, formlessness

in J5–J8) (Yang et al., 2023) or efficiency of neuronal dynamics

(Brefczynski-Lewis et al., 2007; Escrichs et al., 2019; Hiroyasu &

Hiwa, 2017). Incorporating detailed phenomenological reports with

brain function modeling (i.e., neurophenomenology) can potentially accen-

tuate the sources of unexplained variability associated with neural dynamic

modeling of advanced meditative states (Timmermann et al., 2023).

Finally, we also found noticeable hemispheric (left–right) asym-

metries in brain network ICC values within most of the brain net-

works/groups examined, such that some areas exhibited good

reliability in exclusively one (e.g., right thalamus in all jhanas) or the

other (e.g., left primary somatomotor network in all jhanas) hemi-

sphere. Future neuroimaging investigations are likely to benefit by

closely considering the potential roles of each brain network's hemi-

spheric divisions in jhana and advanced meditation, given large-scale

meta-analytic evidence suggesting general functionally relevant asym-

metries in cortical (Kong et al., 2018) and subcortical (Guadalupe

et al., 2017) regions.

4.3 | Utility of brain network ICC

Within-subject fMRI reliability estimates can provide preliminary brain

templates for further detailed and larger neuroimaging investigations

of rare conditions or states such as jhanas. Within the framework of

meditation practice, examining the consistency and reliability of brain

responses under repeated runs of instructed meditative states using

brain network ICC could facilitate objective benchmarking of medita-

tive development (Galante et al., 2023; Wright et al., 2023). Further-

more, brain network ICC maps of the most reliable brain areas in

specific jhanas can efficiently inform the future development of

advanced multivariate jhana decoders that can utilize subtle neuro-

phenomenological elements of distinct jhanas, through sophisticated

machine learning methodologies including multivariate voxel pattern

analysis (Norman et al., 2006), multi-timepoint pattern analysis

(Ganesan, Lv, & Zalesky, 2022), etc. Consequently, such multivariate

decoders can enable neurobiological monitoring of jhanas via neuro-

modulation and neurofeedback devices, which can thereby potentially

improve the accessibility of jhanas and their benefits to the wider

population regardless of meditation expertise.

Brain network ICC can also be implemented in multi-subject longi-

tudinal studies, by performing traditional group statistics (e.g., general

linear modeling) across subject-level brain network ICC estimates. Brain

networks with above-threshold reliability in specific jhanas likely dem-

onstrate stable associations with those jhanas, which can also improve

the statistical likelihood of detecting effects in these networks with

small samples (Zuo et al., 2019). However, note that high reliability

alone does not necessarily imply strong functional relevance of

observed brain responses (Noble et al., 2019, 2021).

4.4 | Limitations

The findings from this intensively sampled single-subject case study

need to be interpreted considering several limitations. First, although

the experimental design involves numerous repeated measurements

(i.e., 27 fMRI runs) which can promote internal replicability and valid-

ity, the generalizability of these findings is nevertheless limited due to

reliance on single subject (N = 1) data. Note that the proposed brain

network ICC approach is intended for within-subject fMRI reliability

analysis; however, it can also be extended in the future to make

group-level inferences by summarizing across subject-level ICC maps.

There is however a need for future validation of brain network ICC as a

robust within-subject fMRI reliability tool using other samples and con-

ditions. Specifically, the findings presented here using 7 T fMRI,

although functionally specific to jhanas, need to be interpreted with

caution, until further broader characterizations of longitudinal variations

in ReHo pertaining to widely studied fMRI contexts (e.g., resting-state,

motor task, memory task) are possible. This also highlights the need for

the broader neuroimaging community to consider acquiring more longi-

tudinal fMRI datasets to enable rigorous evaluations of within-subject

fMRI reliability. Second, ICC methods generally rely on intra- as well as

inter-individual variability, such that high ICC values may not necessar-

ily guarantee high replicability, since they can also result from higher

heterogeneity across individuals (or across regions within brain network

in the case of brain network ICC). However, the likelihood of ICC esti-

mates being exclusively driven by intra-network heterogeneity may be

low, since variability between constituent regions of brain networks/

groups (average relative standard deviation of normalized ReHo across

constituent regions) did not show any significant association with the

brain network ICC estimates. Finally, there are different substyles of

jhana meditation practiced around the world (e.g., kasina practice, mind-

ful breathing) (Shankman, 2008a) and therefore the reliability of brain

areas may change with the practice substyle.

4.5 | Conclusion

For the first time, we assessed the reliability of fMRI ReHo associated

with a single subject (N = 1) sampled intensively (27 fMRI runs over

5 days) using ultrahigh field 7 Tesla fMRI during advanced jhana
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meditation. To accomplish this, we proposed a modified intraclass corre-

lation (ICC) approach called brain network ICC to examine within-subject

fMRI reliability at the level of canonical brain networks. We found sev-

eral brain networks/groups with modest ReHo and good reliability across

distinct jhanas spanning somatomotor, limbic, default-mode, control,

temporoparietal, and thalamic areas. These networks and constituent

regions potentially underpin core neurocognitive mechanisms of jhana

meditation.

Additionally, we found that the reliability of ReHo in some net-

works/groups was below-threshold in specific but not all jhanas.

However, on accounting for variability in self-reported phenomeno-

logical factors such as attentional depth, attentional width, and jhana

intensity, most of these networks/groups improved reliability and

crossed the threshold across jhanas. Comparatively, the impact of

head motion on overall reliability estimates was fairly minimal; how-

ever, future studies should adequately consider the influence of head

motion artifacts while investigating neural correlates of jhanas. Over-

all, our findings provide a preliminary template of brain networks to

contextualize prior results from neuroimaging of jhana meditation, as

well as inform the design of future larger experiments. We recom-

mend implementing rigorous neurophenomenological approaches

while investigating advanced meditation to effectively capture the

most robust brain mechanisms and subtle dynamics underlying

advanced states of consciousness, such as jhanas.
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