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ABSTRACT 

 

Diffusion-weighted imaging allows for in vivo assessment 

of white matter structure, which can be used to assess 

aberrations associated with disease. Several new methods 

permit the automated assessment of important white matter 

characteristics. In the current study we used Automated 

Fiber Quantification (AFQ) to assess differences between 

depressed and nondepressed individuals in 18 major white 

matter tracts. We then used the Maximum Density Path 

(MDP) method to further characterize group differences 

identified with AFQ. The results of the AFQ analyses 

indicated that fractional anisotropy (FA; an index of white 

matter integrity) along bilateral corticospinal tracts (CST) 

was higher in depressed than in nondepressed individuals. 

MDP analyses revealed that white matter anomalies were 

restricted to four subregions that included the corona radiata 

and the internal and external capsules. These results provide 

further evidence that MDD is associated with abnormalities 

in cortical-to-subcortical connectivity. 

 

Index Terms— Major Depressive Disorder (MDD), 

automated fiber quantification (AFQ), maximum density 

paths (MDP), diffusion-weighted imaging, tractography 

 

1. INTRODUCTION 

 

Diffusion-weighted imaging (DWI) allows for the in vivo 

assessment of water diffusion in humans. Because the 

diffusion of water is influenced by local tissue composition, 

inferences regarding the composition of brain structure can 

be made based on measuring this diffusion. A common 

method of DWI inference uses fibers from tractography 

algorithms to infer structural white matter connectivity of 

the brain, which has been used to assess disease states. 

A growing literature suggests that white matter structure 

differs in individuals with Major Depressive Disorder 

(MDD) compared to healthy controls. Meta-analysis of DWI 

studies of MDD has revealed that the most consistent 

findings are related to reduced fractional anisotropy (FA; a 

measure of white matter integrity) between cortical and 

subcortical brain regions [1]. 

Modern diagnosis and treatment of MDD rely on 

observations of clinical symptoms and patient self-reports. 

Improvements in diagnosis and treatment may be possible 

by using neural measures as predictive quantitative indexes. 

To reach this goal, it is critical that equivalent brain 

structures be identified in depressed and nondepressed 

individuals, and that biological properties of these structures 

differ as a function of the depressive state. 

Because tractography algorithms produce large amounts 

of fibers, clustering analyses are commonly used. Many of 

these methods rely on constraints provided by white matter 

atlases that provide probabilistic information regarding tract 

location.  

Automated Fiber Quantification (AFQ) is a method that 

systematically identifies and quantifies 18 important white 

matter tracts in the human brain [2]. First, whole-brain 

tractography is computed. Then, fibers intersecting 

waypoint ROIs are identified. Next, fiber tracts are refined 

by removing outlier fibers. The central portion of the tract is 

established and diffusion properties are calculated at points 

along this core. AFQ thus allows for the comparison of 

white matter properties of important fiber tracts across 

individuals in a systematic and automated manner. 

The maximum density path (MDP) approach permits the 

construction of more compact and localized white matter 

paths. This method resolves structural characteristics from 

67 paths of 50 important white matter regions [3,4]. 

Information from tractography is utilized by choosing a 

subset of fiber tracts that correspond to a white matter atlas. 

A density image graph of these bundles is created (with 

nodes as voxel locations and edges as a density measure), 

and seed point pairs are placed at disparate positions along 

these bundles (as inferred from the white matter atlas). 

Using a graph search method, the MDP is identified 

between the two given seed points. This path follows the 

points of highest density, resulting in a compact 

representation of tract scale, location, and geometry. Using 

geodesic curve registration, paths from different individuals 

can be registered spatially, and variations in localized paths 

that differ as a function of disorder can be identified. 

In the current study, we used these methods in 
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combination to assess differences in fiber tracts between 

individuals diagnosed with MDD and healthy controls. First, 

we identified differences in fiber groups using AFQ; then, 

we used MDPs to further characterize subregions associated 

with the fiber groups identified using AFQ. We 

hypothesized that regions that connect cortical to subcortical 

regions would exhibit abnormal FA in depressed compared 

with nondepressed individuals. 

 

2. METHODS 

 

2.1 Participants 

DWI and high-resolution anatomical (T1-weighted) 

magnetic resonance imaging was obtained in 14 MDD and 

18 age-matched healthy control (CTL) participants. All 

participants were female. The protocol was approved by the 

Stanford University IRB. Informed consent was collected. 

 

2.2 DWI and MRI Data Acquisition 

DWI and T1-weighted imaging data were acquired with a 

3T Discovery MR750 (GE Medical Systems, Milwaukee, 

WI, USA), at the Stanford Center for Neurobiological 

Imaging. A diffusion-weighted, dual-spin-echo, single-shot, 

echo-planar imaging sequence that included 64 2-mm thick 

slices in 96 unique directions (with b = 2000 s/mm
2
; voxel 

resolution 2x2x2 mm
3
) was collected. DWI scan duration 

was 15 min 1 s. For anatomical localization, high-resolution 

T1-weighted scans were acquired (sagittal spoiled gradient 

sequence [SPGR], 0.9x0.9x0.9 mm
3
 resolution).  

 

2.3 Automated Fiber Quantification (AFQ) 

2.3.1 Diffusion Weighted Imaging Processing 

The freely available mrDiffusion software was used for all 

AFQ-related analyses (i.e., preprocessing, tractography, and 

fiber tract identification: www.white.stanford.edu). Effects 

from subject motion were attenuated using 6-parameter 

rigid-body realignment. A mean non-diffusion weighted 

image was created by averaging all motion-corrected b = 0 

image volumes. DWI images were registered to the mean b 

= 0 image. The mean b = 0 image was aligned to the high-

resolution anatomical image. DWI data were then resampled 

to 2 mm isotropic voxels. Resampling was completed by 

combining the motion correction and the anatomical 

registration transforms into an omnibus transform and 

subsequently resampling the data using trilinear 

interpolation [5]. The rotation components of the omnibus 

transform were applied to the gradient directions to retain 

initial orientation. A robust fitting method was used to 

estimate tensors [6]. 

2.3.2 Fiber Tract Identification 

A summary of the AFQ method follows (for further detail 

see [2]). Whole brain tractography was estimated by seeding 

white matter voxels with FA greater than 0.3. For a given 

fiber group, fibers that intersect waypoint regions of interest 

(ROIs) were identified. Each identified fiber was then 

scored based on its correspondence with a standard fiber 

tract probability map. Low-scoring fibers were discarded. 

Fibers were then represented as a 3D Gaussian distribution 

and fibers that deviated substantially from the mean tract 

were culled. The given fiber group was then restricted to the 

central section of fibers that spanned the waypoint ROIs. 

Next, 100 equidistant points along each fiber were 

identified, and the position of a fiber group core was 

determined by the mean location of each node. FA was then 

assessed at each core node by calculating a weighted 

average FA measurement across fibers. Weights were 

calculated based on the Mahalanobis distance of each fiber 

node from the fiber core. The mean FA of each fiber core 

was then computed. 

 

2.4 Maximum Density Paths (MDP) 

2.4.1 MDP: Imaging Preprocessing and Tractography 

FSL’s eddy correction was used for DWI preprocessing. An 

optimized global probabilistic method was used for 

tractography estimation [7,8]. For each subject, 35,000 

fibers were estimated. The Automatic Registration Toolkit 

(ART; [9,10]) was used for nonlinearly transforming T1-

weighted data to subject-specific DWI space.  

2.4.2 MDP: Fiber Clustering  

The primary steps of the MDP procedure are presented 

below (for further detail see [3,4]). Fifty white matter ROIs 

were obtained from the Johns Hopkins University diffusion 

tensor imaging white matter atlas. These white matter tract 

ROIs were transformed to DWI space using ART. 

Previously estimated fibers were selected based on their 

intersection with these white matter tract ROIs, thus 

defining fiber clusters. An intersection score was then 

defined for each intersecting fiber by computing the number 

of ROI voxels through which the given fiber passes. Fibers 

with high intersection scores were considered to be part of a 

white matter fiber tract. Low-scoring fibers were considered 

spurious and discarded. On a voxel-wise basis, the number 

of intersecting fibers was calculated. This resulted in a fiber 

density representation for each ROI. Fiber density 

representations were smoothed with a Gaussian kernel.  

2.4.3 MDP: Cluster Representation 

Compact representations of the identified fiber bundle were 

then computed. First, each fiber density representation was 

treated as a graph (i.e., a set of nodes [here, voxels] 

connected by undirected edges). Edge values were weighted 

inversely by the sum of voxel densities (i.e., the fiber 

densities of the two connected voxels). From this graph 

definition, the path of voxels with the highest number of 

fibers connecting two seed points was identified using 

Dijkstra’s algorithm [11], a graph search method that finds 

shortest paths between nodes. The two seed points were 

used as start and end nodes in the graph search and were 

identified previously in the ROI atlas. In order to better 

condition the paths for registration, they were smoothed 

with a Gaussian kernel. This resulted in the compact 

representations of tracts, that is, MDPs. 
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2.4.4 MDP: Registration  

After computing MDPs for all seed point pairs (67 total) in 

the 50 white matter tract ROIs for each subject, the paths 

were registered in order to assess group differences. This 

was accomplished using geodesic curve registration, which 

estimated the mean MDPs across all subjects and used it as 

target to compute point-wise correspondences. The method 

that was used to match 3D curves using geometric features 

is described in [12,13]. This resulted in a transform that was 

used to align corresponding points along each MDP. 

 

2.5 Analyses Plan 

First, using two-sample t-tests, mean FA values were 

compared for the 18 fibers identified using AFQ. Next, 

MDPs associated with fiber groups identified with AFQ 

were aggregated. Finally, FA values from corresponding 

points along each identified MDP were compared between 

groups using two-sample t-tests. 

 

2.6 Multiple Comparisons Correction 

A False Discovery Rate (FDR; q = 0.05; [14]) procedure 

was used to correct for multiple comparisons for tests of 

mean FA from tracts identified with AFQ. In addition, FDR 

was used to correct for multiple comparisons within points 

along each MDP. 

 

3. RESULTS 

 

3.1 AFQ 

AFQ identified 18 fiber groups. Of these, two exhibited 

differences between MDD and CTL participants: the left 

and right CST tracts (Table 1; Fig. 1).  

 

3.2 MDP Identification 

Given observed differences in the fiber bundled labeled by 

AFQ as CST, 7 of the available 50 MDP regions of interest 

were selected for further analysis. These 7 regions included 

24 unique MDPs that either overlap, or are associated with 

CST projections. These MDPs are summarized in Table 2. 

 

3.3 MDP Results 

Point-by-point FA values were assessed across 24 MDPs 

identified to be related to AFQ’s CST. Of these, four 

exhibited point-wise differences between groups that 

survived correction for multiple comparisons using FDR 

(Table 3, Fig. 2). The right posterior limb of the internal 

capsule exhibited the largest percentage of points differing 

between groups (76.5%). All difference points were 

characterized by greater FA in the depressed group, except 3 

of 6 points in the left external capsule. 

 

6. DISCUSSION 

 

AFQ and MDP analyses represent complementary and 

highly sensitive methods for the identification of white 

matter microstructure. Using AFQ, we found that the 

structural integrity of bilateral CSTs is greater in currently 

TABLE 2 

WHITE MATTER ROIS FOR MDPS 

MDP White Matter Region 
Number of seed pairs 

(per hemisphere) 

Corticospinal tract 1 

Anterior Limb of the Internal Capsule 2 

Posterior Limb of the Internal Capsule 2 

Anterior Corona Radiata 2 

Superior Corona Radiata 2 

Posterior Corona Radiata 2 

External Capsule 1 

White matter regions of interest (ROIs) included in the present 

analyses. All ROIs were bilateral. Number of seed pairs indicates the 
number of unique MDPs computed in the given region of interest. 

TABLE 3 

GROUP DIFFERENCES IN MDP FA 

White Matter Region* 
Total 

Points 

Points with 

Group 

Differences 

% of 

Points  

L External Capsule 48 6**
 

12.5
 

R Superior Corona Radiata 17 1 5.9 

R Posterior Limb Internal Capsule 17 14 82.4 

L Posterior Limb Internal Capsule 16 6 37.5 

Group differences in fractional anisotropy (FA) along maximum density 

paths associated with the corticospinal tract (CST). *For each of these 

analyses only one of two MDPs exhibited point-wise group differences. 

**3 of the 6 L external capsule points that exhibited group differences 

were associated with greater FA in the CTLs group. In all other regions 

each point exhibited higher FA in the MDDs group. L = left; R = right. 

 

 
FIGURE 1 

AFQ CORTICOSPINAL TRACT  

200 fibers rendered from right corticospinal tract (CST) identified using 

AFQ. Blue lines indicate waypoint regions of interest used to identify the 

CST. Mean FA values were compared between groups along the fiber 

group’s core (not visualized). 

 

TABLE 1 

GROUP DIFFERENCES IN AFQ FA 

AFQ Fiber Group 
CTL FA MDD FA 

p-value* 
M SD M SD 

L Corticospinal Tract 0.620 0.020 0.644 0.020 < 0.002 

R Corticospinal Tract 0.614 0.021 0.639 0.015 < 0.0001 

Group differences in fractional anisotropy (FA) along AFQ identified fiber 

tracts. *A false discovery rate (FDR) method was used to correct for 

multiple comparisons for each statistical test. CTL = control participants; 

MDD = Major Depressive Disorder participants. M = mean; SD = standard 

deviation; L = left; R = Right. 

 

594



depressed individuals relative to nondepressed controls. 

This finding enabled us to use the MDP procedure to further 

examine these differences, where we found FA at points 

along the left external capsule, right superior corona radiata, 

and bilateral posterior limbs of the internal capsule to differ 

between groups.  

Previous research has shown that MDD is associated with 

reduced connectivity between subcortical and cortical 

regions [1]. In the current study we found that AFQ 

identified CST tracts and MDP points in MDD participants 

exhibited greater FA than in nondepressed individuals. One 

exception to this is that half of the points of the left external 

capsule in which there were group differences were 

associated with greater FA in CTL participants. This raises 

the possibility that variation in FA in depression is 

dependent on white matter location. Indeed, although 

previous research has most consistently found reductions in 

FA associated with depression, there is also evidence of 

increases in FA associated with depression (e.g., [15]). 

MDD is often characterized by psychomotor agitation or 

retardation; the neurophysiological bases of these 

difficulties, however, are currently unclear. Although 

anomalies in striatal and motor region functioning has been 

documented in MDD (e.g., [16]), it is not clear whether 

psychomotor difficulties are due to ‘downstream’ structural 

abnormalities such as anomalies in the CST, given the role 

of CST in trafficking motor signals. The current findings 

provide initial evidence that the CSTs may be involved in 

these motor-related deficits. 

Given the wide variety of function associated with the 

CST and related connectivity (e.g., corona radiate, internal 

capsule), it will be important in future research to examine 

the relation of differences in FA observed in these regions to 

depressive symptomatology. 

The present findings are important in demonstrating 

anomalies in white mater connectivity associated with the 

CST in MDD. In addition, the current study demonstrates 

that integration of AFQ and MDP approaches may be 

particularly useful in clinical settings, given their automated 

nature (thus eliminating the need for manual scoring and 

reducing bias that may result from such scoring), and robust 

representation of white matter in compact formats. 
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FIGURE 2 

GROUP DIFFERENCES IN MDP FA 

Group differences in fractional anisotropy (FA) along maximum density 

paths associated with the corticospinal tract (CST). MDPs with significant 

point differences between groups are colored red, all others are colored 

blue. R = right; L = left; Pos = posterior; Sup = superior.  
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