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ABSTRACT 

 
Graph theory is increasingly used in the field of 
neuroscience to understand the large-scale network structure 
of the human brain. There is also considerable interest in 
applying machine learning techniques in clinical settings, 
for example, to make diagnoses or predict treatment 
outcomes. Here we used support-vector machines (SVMs), 
in conjunction with whole-brain tractography, to identify 
graph metrics that best differentiate individuals with Major 
Depressive Disorder (MDD) from nondepressed controls. 
To do this, we applied a novel feature-scoring procedure 
that incorporates iterative classifier performance to assess 
feature robustness. We found that small-worldness, a 
measure of the balance between global integration and local 
specialization, most reliably differentiated MDD from 
nondepressed individuals. Post-hoc regional analyses 
suggested that heightened connectivity of the subcallosal 
cingulate gyrus (SCG) in MDDs contributes to these 
differences. The current study provides a novel way to 
assess the robustness of classification features and reveals 
anomalies in large-scale neural networks in MDD. 
 

Index Terms— Major Depressive Disorder (MDD), 
graph theoretical analysis, machine learning, support vector 
machine (SVM), small-world 
 

1. INTRODUCTION 
 
Major Depressive Disorder (MDD) is one of the most 
prevalent and costly psychiatric disorders [1]. 
Understanding the neural foundations of MDD is critical for 
improving the prevention, detection, and treatment of this 
debilitating disorder.  

Recently there has been considerable interest in using 
tools from computer science and mathematics in human 
neuroscience applications. For example, graph theory and 
machine learning techniques are being used to characterize 
large-scale network structure of the brain and to classify 
individuals into diagnostic groups based on measures of 
brain structure and function. 

Graphs describe brain networks as mathematical 
structures formed by pairwise relations (called ‘edges’) 
between brain regions (‘nodes’). In human neuroscience, 
edges (or connections) are most often derived from 

functional or diffusion-based relations between regions. 
Complex network measures derived from graph theoretical 
analyses can be used to characterize the human brain. They 
are reliable, easy to compute, and can be related to other 
measures (e.g., behavior or disease), e.g., to reveal 
anomalies in neurological and psychiatric disorders [2]. 

Several studies have used graph theoretical analyses to 
characterize large-scale brain networks in MDD. Different 
methods have been applied to assess brain networks in these 
studies: two studies used resting-state functional magnetic 
resonance imaging (fMRI; [3,4]), another examined 
synchronization among electroencephalography (EEG) 
electrodes [5], and the most recent study reported 
correlations between regional white-matter volumes [6]. 

The branch of computer science known as machine 
learning is concerned with the development of algorithms 
that can ‘learn’ patterns in data that can be used for 
predictive modeling or classification of data into groups. 
Machine learning techniques are multivariate, and can 
identify key features in dataset and how they interact. This 
makes them particularly amenable to neuroscience 
problems, given the complexity of the human brain.  

Machine learning has been applied to human brain 
imaging data to classify disease states and optimize 
treatment selection [7]. In MDD, diagnosis and treatment 
rely largely on self-report and observation of clinical 
symptoms. In contrast, brain metrics, in conjunction with 
machine learning, may help in the diagnosis and treatment 
of this disorder. Indeed, recent diagnostic and treatment 
selection classification in the context of MDD has been 
promising [7], and one study used tractography-based 
connectivity to successfully classify depressed individuals 
[8]. Notably, however, that study did not use common graph 
metrics.  

In the current study, nine common graph metrics were 
used as features for support-vector machine classification 
and scored based on their ability to differentiate depressed 
from nondepressed individuals. This approach may yield a 
more nuanced understanding of differences in networks than 
does univariate testing of single features. Furthermore, we 
used regional network analyses to discover regional 
differences that might underlie observed group differences 
in global graph metrics. 
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2. METHODS 
 
2.1 Participants 
Fourteen MDD and 18 age-matched control (CTL) 
participants (all female) underwent diffusion-weighted 
imaging (DWI) and high-resolution anatomical (T1-
weighted) magnetic resonance imaging. The Stanford 
University IRB approved the protocol and written informed 
consent was collected before data acquisition. 
 
2.2 DWI and MRI Data Acquisition 
Imaging data were acquired using a 3T Discovery MR750 
(GE Medical Systems, Milwaukee, WI, USA), at the Center 
for Neurobiological Imaging at Stanford University. The 
DWI scan utilized a diffusion-weighted, dual spin-echo, 
single-shot, echo-planar imaging sequence and consisted of 
64 2-mm thick slices in 96 unique directions (with b = 2000 
s/mm2), with voxel resolution 2x2x2 mm3. The duration of 
this scan was 15 min 1 s. High-resolution anatomical scans 
were collected for anatomical localization (sagittal spoiled 
gradient sequence [SPGR], 0.9x0.9x0.9 mm3 resolution).  
 
2.3 Tractography and Cortical Segmentation 
DWI data were preprocessed using FSL’s eddy correction 
procedure [9]. Tractography was estimated from these eddy-
corrected images using an optimized global probabilistic 
method [10,11]. This method was used to estimate 35,000 
fibers for each subject. The freely available software, 
FreeSurfer (surfer.nmr.mgh.harvard.edu) was used for 
cortical reconstruction and segmentation of the T1-weighted 
images. This resulted in 34 unique cortical regions per 
hemisphere (68 total). These cortical regions were then 
dilated to ensure their intersection with white matter, to 
create a tractography-based connectivity matrix. The high-
resolution anatomical images were registered to the raw 
fractional anisotropy (FA) image via the automatic 
registration toolkit (ART; [12,13]). ART first computes an 
affine and then a nonlinear transformation. These transforms 
were used to transform the enlarged cortical segmentations 
to raw DWI space. 
 
2.4 Connectivity Matrix Computation 
Connectivity matrices were created on a subject-by-subject 
basis by assessing the number of fibers that intersected pairs 
of cortical ROIs. This was done by combining, in the raw 
DWI space, the dilated cortical ROIs and tractography 
fibers. Each connectivity matrix was 68x68 (one 
row/column per ROI), with each element representing the 
raw number of intersecting fibers. These connectivity 
matrices were normalized so that their elements ranged from 
0 to 1. Matrices were then thresholded to maintain the top 
25% most strongly weighted edges, and binarized to set all 
remaining non-zero weights to 1. We selected 0.25 for the 
binarizing threshold as it has been suggested to be 

biologically plausible [14]. Binarization and all subsequent 
graph analyses were conducted using the freely available 
Brain Connectivity Toolbox [2]. 
 
2.5 Graph Metric Calculation 
Nine graph metrics (global efficiency, transitivity, path 
length, assortivity, modularity, small-worldness, flow 
coefficient, total flow, and betweenness) were selected as 
features based on their ability to characterize whole-brain 
network characteristics (see [2] for equations and details). 
All metrics were computed from the 0.25 thresholded, 
binarized matrices, modularity was calculated as the average 
of ten iterations due to variability in the algorithm, and 
small-worldness was computed from transitivity and path 
length normalized relative to 10 randomized iterations of the 
given metric computed from a random network (with the 
same degree distribution as the original). 
 
2.6 Support Vector Machine (SVM) Classification 
SVM classifiers were trained to discriminate between graph 
metrics from the depressed and nondepressed participants. A 
leave-one-out cross-validation approach was used to access 
classifier accuracy performance. SVM training and testing 
was conducted using MATLAB (the Mathworks, Natick, 
MA, USA). 
 
2.7 Assessment of SVM Success 
Classification was performed for all possible combinations 
of the nine graph-metric features (i.e., 29 – zero feature set = 
511 unique sets). To assess SVM performance, the number 
of single tests reaching significance (i.e., for a single sign 
test, 22 correct of 32 classifications reaches p = 0.0501) was 
tested in a binomial test with the assumption that only 5% of 
the 511 tests would reach significance under the null 
hypothesis; that is, that the SVM did not perform better than 
chance.  
 
2.8 Identifying the Most Robust SVM Features  
To assess how robust each feature was, we aggregated the 
accuracies for all SVM iterations that included a given 
feature. Next, permutation-based t-tests (100,000 iterations 
shuffling subjects by group status) were used to assess 
differences between accuracies associated with different 
features. This identified the graph metric that most robustly 
differentiated MDD from nondepressed individuals. 
 
2.8 Regional Analysis of Neural Networks 
To identify group differences in the neural networks, the 
numbers of neighbors for each region were compared 
between groups using permutation-based t-tests. 
 
2.9 Correction for Multiple Comparisons 
When appropriate, a False Discovery Rate (FDR; q = 0.05) 
procedure was used for multiple comparison correction [15]. 
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3. RESULTS 

 
3.1 Graph Metrics Between Groups 
Permutation t-tests between graph metrics across groups did 
not reveal significant differences after correction for 
multiple comparisons (Table 1). 
 

3.2 SVM Accuracy 
For a single SVM iteration, 22 correct group classifications 
out of 32 classifications was considered significant using the 
sign test. Of the 511 SVM iterations, 228 iterations 
classified 22 or more individual correctly (binomial test: p < 
0.001). 
 
3.3 SVM Accuracy by Graph Metric 
To assess the most robust graph metric, we compared the 
accuracies of SVM iterations associated with different 
metrics (Methods section 2.8; Table 2). Small-worldness 
was the most robust metric; flow coefficient was the graph 
metric that exhibited the next highest mean accuracy (small-
worldness: M = 0.6888; SD 0.063; Flow Coefficient: M = 
0.6628; SD 0.069; permutation t-test: p < 0.001).  
 

3.4 Most Robust SVM Feature 
Small-worldness was the most robust feature included in the 
SVM iterations. The aggregate accuracies associated with 
small-worldness were significantly different from 50% 
(t(255) = 9.1, p < 0.001). The SVM iteration only including 
small-worldness (a single feature) was not significant 
(59.4% accuracy; sign test: p < 0.40). The MDD group 
exhibited a (nonsignificantly) larger mean small-world 
organization than did the control group (MDD: M = 1.5747, 
SD = 0.0402; CTL: M = 1.5477, SD = 0.0393).  
 
3.5 Regional Brain Differences 
In seven brain regions, the MDD and CTL participants 
differed in degree at the p < 0.05 level; after FDR correction 
for multiple comparisons, only three tests remained 
significant: left rostral anterior cingulate, right inferior 
parietal cortex, and right pars orbitalis (Table 3; Figure 1). 
 

 

 
6. DISCUSSION 

 
We found that the small-worldness of the brain’s 

structural network most robustly differentiated individuals 
with MDD from nondepressed controls. Post-hoc regional 
analyses suggest that specific brain regions contribute to 
these differences. Importantly, neither t-tests nor SVMs with 
a single graph metric feature were able to reliably 
differentiate groups. 

Even though small-worldness was the most robust graph 
metric feature, the inclusion of additional SVM features 
improved classification accuracy (compared to an SVM 
with a single small-world feature, and to results of group 
differences in small-worldness tested using t-tests). This 
points to the multivariate advantages of SVM, which may be 
better able to differentiate groups than typical group 
comparisons that assess differences in a single brain metric. 

Depressed individuals had increased small-world 
organization compared to nondepressed individuals. Small-
worldness measures the balance between local specialization 
and global integration, so increased small-world 
organization may relate to facilitated processing in networks 
responsible for symptoms associated with MDD, for 
example, negative emotional and ruminative processing. 
Future research should assess the contribution of specific 
nodes to the small-world metric. 

TABLE 2 
CLASSIFICATION ACCURACIES 

Graph Metric Accuracy M SD Number of SVMs* 

Global Efficiency 0.6575 0.079 122 
Transitivity 0.6575 0.088 135 

Path Length 0.6539 0.083 123 
Assortativity 0.6440 0.093 118 
Modularity 0.6576 0.082 122 
Small World 0.6888 0.063 169 
Flow Coefficient 0.6628 0.069 132 
Total Flow 0.6625 0.087 134 
Betweenness 0.6492 0.088 115 

SVM classification accuracies by graph metric feature; Number of 
SVMs = total number of SVMs in which p = 0.05 was reached, out of a 
total of 256 iterations; *binomial test all p-values < 0.001. 
 
 TABLE 3 

REGIONAL CONNECTEDNESS  

Region CTL  MDD p-value* 

M SD M SD 
L. Banks S. Temp. Sulc. 15.6 2.3 13.1 3.4 0.014 

L. Entorhinal 3.7 2.9 7.3 3.5 0.003 
L. Ros. Ant. Cingulate 20.5 1.2 22.1 1.3 0.002** 
L. Temporal Pole 5.8 2.1 7.4 1.6 0.024 
R. Inferior Parietal 21.4 1.9 18.2 1.7 < 0.001** 
R. Lateral Occipital 17 1.7 15.7 1.0 0.021 
R. Pars Orbitalis 5.5 0.7 6.6 1.1 < 0.001** 

Regional connectedness by group. SD = standard deviation; M = mean; *p-
value calculated from two-tailed permutation t-test; ** indicates 
significance after FDR correction (q = 0.05); L. = Left; R. = right; Banks S. 
Temp. Sulc. = Banks of the superior temporal sulcus; Ros. Ant. Cingulate = 
Rostral anterior cingulate. 
 

 

TABLE 1 
GRAPH METRICS 

Graph Metric CTL  MDD  p-value* 
M SD M SD 

Global Efficiency 0.590 0.006 0.593 0.004 0.074 

Transitivity 0.548 0.012 0.543 0.548 0.187 
Path Length 1.916 0.029 1.907 0.019 0.314 
Assortativity -0.062 0.022 -0.065 0.038 0.822 
Modularity 0.334 0.042 0.354 0.039 0.167 
Small World 1.548 0.039 1.575 0.040 0.067 
Flow Coefficient 0.329 0.013 0.339 0.013 0.039 
Total Flow 1.441 4.592 1.441 3.962 0.991 
Betweenness 62.921 2.649 62.559 1.492 0.659 

Graph metrics by group. MDD = Major Depressive Disorder; CTL = 
control; M = mean; SD = standard deviation; *p-value calculated from 
permutation t-test, no test reached significance after FDR correction. 
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Small-world organization is calculated as the ratio of 
transitivity (or clustering coefficient) to path length 
(characteristic path length). Neither of these metrics, 
individually, differentiated the MDD and CTL groups 
(Table 1), and they were less able to differentiate groups 
across SVM iterations than was small-worldness (Table 2). 
Thus, the ratio of transitivity to path length, as computed in 
the small-world metric, is more informative for 
differentiating groups than either metric alone. 

Prior studies found decreased small-world organization 
associated with depression [3,5,6]. This inconsistency with 
the current results may be because other imaging modalities 
were used to compute connectivity metrics (resting state 
fMRI [3], EEG synchronization [5], white-matter 
correlations [6]). Future research should attempt to relate 
graph metrics from different neuroimaging modalities. 

Regional graph analyses suggest that MDDs differed from 
nondepressed individuals in the number of neighbor 
connections of certain regions. More specifically, MDDs 
exhibited more neighboring connections associated with 
rostral anterior cingulate cortex and the orbital part of the 
right inferior frontal gyrus, and less connectivity for the 
inferior parietal cortex. Notably, the rostral anterior 
cingulate cortex FreeSurfer cortical ROI primarily includes 
the subcallosal cingulate gyrus (SCG), a region of 
theoretical importance in the pathophysiology of MDD (see 
[16] for review). 

In conclusion, the current study provides the first 
evidence that common tractography-based graph metrics 
may help in the classification of MDD, that small-worldness 
differentiates depressed from nondepressed individuals, and 
that altered SCG, right pars orbitalis, and right inferior 
parietal cortex connectivity may contribute to these large-
scale network differences.  
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FIGURE 1. 
REGIONAL CONNECTEDNESS 

Upper left image is view from the left, bottom left image is view from the 
right, and the right image is the view from above. Blue spheres indicate 
non-significant statistical tests. Red spheres indicate statistically 
significant tests (FDR corrected, q = 0.05). The size of the sphere 
indicates the magnitude of p-value (displayed as 1 - p-value). L. Ros. Ant. 
Cing. = Left Rostral Anterior Cingulate; R. Inf. Parietal C. = Right 
Inferior Parietal Cortex; R. Pars. Orbitalis = Right Pars Orbitalis. The 
BrainNet Viewer was used for visualization 
(http://www.nitrc.org/projects/bnv/).  
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