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Abstract Negative biases in cognition have been document-
ed consistently in major depressive disorder (MDD), includ-
ing difficulties in the ability to control the processing of neg-
ative material. Although negative information-processing
biases have been studied using both behavioral and neuroim-
aging paradigms, relatively little research has been conducted
examining the difficulties of depressed persons with inhibiting
the retrieval of negative information from long-term memory.
In this study, we used the think/no-think paradigm and func-
tional magnetic resonance imaging to assess the cognitive and
neural consequences of memory suppression in individuals
diagnosed with depression and in healthy controls. The par-
ticipants showed typical behavioral forgetting effects, but con-
trary to our hypotheses, there were no differences between the
depressed and nondepressed participants or between neutral
and negative memories. Relative to controls, depressed indi-
viduals exhibited greater activity in right middle frontal gyrus

during memory suppression, regardless of the valence of the
suppressed stimuli, and differential activity in the amygdala
and hippocampus during memory suppression involving neg-
atively valenced stimuli. These findings indicate that de-
pressed individuals are characterized by neural anomalies dur-
ing the suppression of long-term memories, increasing our
understanding of the brain bases of negative cognitive biases
in MDD.
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Cognitive theories of major depressive disorder (MDD) sug-
gest that negatively biased cognitive processes play a critical
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role in the development and maintenance of depression (e.g.,
Beck, 1976). Negative cognitions are posited to reflect dys-
functional schemas about the self that bias individuals’ pro-
cessing toward negative-content stimuli. Indeed, depressed
individuals exhibit enhanced memory for negative informa-
tion (e.g., Mathews & MacLeod, 2005; Matt, Vázquez, &
Campbell, 1992; Williams, Watts, MacLeod, & Mathews,
1997) and are characterized by deficits in controlling the pro-
cessing of negative material (for a review, see Gotlib &
Joormann, 2010). Theorists have suggested that these difficul-
ties involving the processing of negative information contrib-
ute to the onset and severity of MDD (e.g., Ingram, 1984;
Kircanski, Joormann, & Gotlib, 2012; Teasdale, 1983).
Therefore, it is critical that we gain a better understanding of
how depressed individuals process and control negative
information.

One line of research, focusing on the functioning of work-
ing memory (WM), indicates that depressed individuals are
characterized by deficits in inhibitory control (Gotlib &
Joormann, 2010). For example, Joormann (2004) and
Gotlib, Yue, and Joormann (2005) found that dysphoric indi-
viduals show reduced negative priming for negative stimuli;
similar results were also reported by Goeleven, De Raedt,
Baert, and Koster (2006) with depressed individuals. In these
tasks, participants are asked to attend to, and make a judgment
about, one stimulus while ignoring a second, simultaneously
presented, stimulus. The negative-priming effect refers to a
behavioral slowing that occurs when participants must re-
spond to a stimulus that they were asked to ignore on the
previous trial. This slowing is posited to reflect the lingering
effects of inhibitory processes that were initiated when partic-
ipants were required to ignore the stimulus when it was pre-
viously presented. Findings that depressed individuals show a
reduced negative-priming effect for negatively valenced stim-
uli suggest that they have difficulty inhibiting the processing
of negative items, and thus instead attend to the items they are
supposed to ignore. Other studies have demonstrated that de-
pressed individuals have difficulty removing no-longer-
relevant negative information from WM (e.g., Joormann &
Gotlib, 2008; Joormann, Nee, Berman, Jonides, & Gotlib,
2010; Levens & Gotlib, 2010). In these experiments, partici-
pants briefly memorize two sets of words and then are imme-
diately instructed to ignore one of the sets to make a subse-
quent judgment about the words. Depressed individuals have
difficulty when they are required to ignore sets of negative
words (Joormann & Gotlib, 2008; Joormann et al., 2010),
indicating impairment in removing negative information from
WM.

Collectively, these studies indicate that depressed indi-
viduals are impaired in their ability to regulate the pro-
cessing of negative stimuli. It is important to note, how-
ever, that these investigations have focused primarily on
how depressed persons process novel or recently

experienced information. It is likely that depressed indi-
viduals also struggle with inhibiting recall of long-term
negative memories (Gotlib & Joormann, 2010). In fact,
the accessibility of negative memories and the tendency
to ruminate about them are hallmark characteristics of
depression (Nolen-Hoeksema, 2000). One way in which
researchers have studied individuals’ ability to inhibit un-
wanted long-term memories is by using the think/no-think
(TNT) task (Anderson & Green, 2001). In this task, indi-
viduals learn paired associates (e.g., insect–roach) and are
then asked to either practice retrieving (think) or suppress-
ing the associates (no-think). The consequences of retriev-
ing and suppressing are then assessed with a memory test
in which all the learned associations are tested, including
some pairs that the participants did not retrieve or sup-
press after the initial learning (i.e., baseline items). In
nondepressed individuals, suppressing associates results
in poorer subsequent memory for those words (Anderson
& Green, 2001; for a review, see Anderson & Hanslmayr,
2014; Anderson & Huddleston, 2011). This finding of
suppression-induced forgetting (SIF) suggests that
attempting to prevent unwanted memories from entering
awareness results in decreased long-term accessibility of
those memories. With respect to depression, if depressed
individuals have difficulty inhibiting retrieval, then they
should show reduced SIF. Interestingly, the results of
studies testing this formulation are mixed, with some
showing that dysphoric and depressed individuals demon-
strate less SIF than do healthy control participants (Hertel
& Gerstle, 2003; Hertel & Mahan, 2008; Joormann,
Hertel, Brozovich, & Gotlib, 2005), and others reporting
no differences between dysphoric or depressed individuals
and controls (Hertel & Calcaterra, 2005; Joormann,
Hertel, LeMoult, & Gotlib, 2009). In fact, averaging
across these five studies (weighted by sample size) yields
data indicating that whereas control participants show a
SIF effect of 5 % (effects that are consistent with, though
slightly smaller than, those reported in other studies using
unselected samples; e.g., Anderson & Huddleston, 2011),
depressed participants show a SIF effect of 0 %, suggest-
ing a modest deficit in inhibitory control in depression.1

The TNT paradigm has been adapted to study brain activity
when individuals attempt to inhibit memory retrieval
(Anderson, 2004; Benoit & Anderson, 2012; Butler &
James, 2010; Depue, Curran, & Banich, 2007; Hulbert,
Henson, & Anderson, 2016; Levy & Anderson, 2012; Paz-
Alonso, Bunge, Anderson, & Ghetti, 2013). These studies
have indicated that suppression is associated with increased

1 This only includes participants in the Bunaided^ condition in those stud-
ies, which was the condition most comparable to the method we used here.
When provided with Baids^ (i.e., alternative diversionary thoughts to think
about instead of the target), both controls and MDD patients showed far
stronger SIF, and differences between the groups were minimized.
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activity in a set of regions including lateral prefrontal cortex
(both dorsal and ventral regions), medial prefrontal cortex
(including the anterior cingulate cortex and presupplementary
motor area), and lateral parietal cortex (including the
intraparietal sulcus and angular gyrus). This network is posit-
ed to be involved in the implementation of cognitive control
that allows individuals to prevent unwanted memories from
entering awareness. Increased activity in this network is ac-
companied by a decrease in medial temporal lobe activity
during suppression, which is posited to be the target of top-
down inhibitory regulation (Anderson, 2004; Depue et al.,
2007; for a review, see Anderson & Hanslmayr, 2014).
Consistent with this possibility, several studies have used ef-
fective connectivity analysis to document top-down modula-
tion of hippocampal activity during retrieval suppression
(Benoit & Anderson, 2012; Benoit, Hulbert, Huddleston, &
Anderson, 2015; Gagnepain, Henson, & Anderson, 2014).
Importantly, suppression is also associated with decreased ac-
tivity in the amygdala when the items being suppressed are
negatively valenced, suggesting a modulation of emotional
response during these experiences (Depue et al., 2007). The
patterns of brain activity during suppression exhibited by
these unselected samples of individuals provide a baseline
for understanding impaired memory suppression in MDD.

To date, investigators have not examined the neural bases
of the deficits in SIF that have been reported in depressed
individuals. In the present study, we assessed both the cogni-
tive and the neural correlates of memory suppression in de-
pressed individuals and healthy controls. Participants first
learned paired associates, in which the cue word was always
neutral but the response word was either negative or neutral in
valence. Next, we scanned participants as they completed the
TNT phase, which required them to either retrieve or suppress
some of the word-pair associates. Immediately after this
phase, we tested participants’ memory for all of the paired
associates while they were still in the scanner. On the basis
of previous findings, we hypothesized that depressed partici-
pants would exhibit less SIF than would healthy controls. We
also predicted that depressed participants would have difficul-
ty suppressing negative memories in particular, although it
should be noted that prior studies using the TNT paradigm
failed to confirm this prediction (Hertel & Gerstle, 2003;
Joormann et al., 2005). Consistent with previous reports of
reduced cognitive control ability in depressed individuals,
we further predicted that depressed participants would dem-
onstrate less activity than would healthy controls in the re-
cruitment of prefrontal and parietal regions during suppression
attempts. Finally, we predicted that, as compared to healthy
controls, depressed participants would exhibit greater activa-
tion in the hippocampus and amygdala during no-think trials,
particularly when negative memories were suppressed,
reflecting diminished control over these memories for de-
pressed individuals.

Method

Participants

Nineteen healthy control (CTL) individuals and 18 individuals
diagnosed with MDD participated in the study. The data from
three CTL and two MDD individuals were excluded due to
problems with task presentation in the scanner (MDD N = 1,
CTLN = 1) or scanner function (CTLN = 1), discomfort in the
scanner (CTL N = 1), or an inability to learn the word pairs
(MDDN = 1). After excluding these five participants, wewere
left with 16 MDD participants (nine females, seven males)
and 16 CTL participants (eight females, eight males). The
CTL participants had no history of psychiatric disorders and
had never taken psychotropic medication. All participants
were recruited through online postings, were between 18
and 56 years of age, had no history of brain injury and no
substance/alcohol abuse in the last six months, and met the
requirements for MRI scanning (e.g., had no metal implants).
The MDD participants were not comorbid for bipolar I or II
(mania), psychosis, or learning disabilities. The depressed par-
ticipants also met the DSM-IV criteria for current MDD using
the Structured Clinical Interview for DSM (SCID; First,
Dibbon, Spitzer, & Williams, 2004). All participants also
completed the Beck Depression Inventory (Beck, Rush,
Shaw, & Emery, 1979). Participants were compensated for
their time, and all gave informed consent. The study was in
compliance with the ethical standards set forth by the
American Psychiatric Association and was conducted with
approval from the Stanford University institutional review
board.

Think/no-think task

Materials

The critical stimuli for this study were 24 sets of words; each
set included four words. Each set was designed to have two
possible cues (e.g., Trunk or Street), both of which were neu-
tral, and two possible response words, one of which was neg-
atively valenced (e.g., Corpse) and the other of which had a
neutral valence (e.g., Violin). These words were selected from
the Affective Norms for English Words (Bradley & Lang,
1999), allowing us to assess the valence (negative response
words,M = 2.1, SD = 0.5; neutral response words,M = 5.5, SD
= 0.6; neutral cue words, M = 5.1, SD = 0.6) and arousal
(negative response words,M = 5.0, SD = 0.9; neutral response
words, M = 4.0, SD = 1.0; neutral cue words, M = 3.4, SD =
0.7) ratings for each set of items.

Each set was designed so the cue words would act as effec-
tive retrieval cues for either response, so that the assignments of
cues to responses could be counterbalanced across participants
(i.e., one participant learned Trunk–Corpse and Street–Violin,
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and another participant learned Trunk–Violin and Street–
Corpse). Similarly, the assignments of words pairs to condi-
tions (baseline, think, and no-think) were also counterbalanced
across participants. This meant that there were a total of six
counterbalancing conditions for the items (three conditions
and two cue-to-response mappings). Importantly, the cues were
always neutral; therefore, the cue itself (Trunk or Street) did not
provide any information about the valence of the response
word. The independent probes were also designed to uniquely
cue each response word separately (e.g., Anatomy–Co____ for
Corpse; Lessons–Vi___ for Violin). Independent probes are
used in these type of paradigms to rule out several
noninhibitory explanations of forgetting (for more
information, see Anderson & Spellman, 1995). These sets were
divided into three groups of eight items that rotated through the
experimental conditions (think, no-think, and baseline). An ad-
ditional six word pairs (all neutral items) were used as fillers
throughout the experiment; thus, each participant learned a total
of 54 word pairs (six filler, eight think–negative, eight think–
neutral, eight baseline-negative, eight baseline-neutral, eight
no-think–negative, and eight no-think–neutral).

Procedure

The TNT procedure consisted of three separate phases: learn-
ing, TNT, and test. The learning phase was completed outside
the scanner; the TNT phase and test phase were conducted
while participants were inside the bore of the MRI scanner,
though fMRI data were collected only during the TNT phase.
This procedure was used to minimize forgetting on the final
test that might be due to changes in physical and mental con-
text associated with getting out of the scanner.

Learning phase Participants learned the cue–associate word
pairs through a drop-off study–test training procedure. On
study trials, participants were presented with an intact word
pair for 5 s and were encouraged to form an association be-
tween the items. On test trials, the cue word appeared and
participants had up to 5 s to verbally report the associate.
For feedback, the correct associate was presented for 2 s after
every test trial. An experimenter recorded whether or not the
response was correct. If no response was given or the response
was incorrect, that cue word was presented again at the end of
the list (i.e., items recalled correctly dropped out of the set).
This was repeated for each list until every correct associate
was provided once. To make this learning phase easier for
participants, we divided the large number of word pairs into
smaller lists and tested each word pair three times across the
whole learning phase. More specifically, participants initially
learned lists of six word pairs at a time (i.e., they studied six
pairs, and then were immediately given drop-off testing on
those six items). After the participants had learned three lists
of six pairs, they were given an 18-item drop-off test covering

all three lists they had just learned. Once this was complete,
they moved on to three more lists of six items, followed by an
18-item drop-off test reviewing all of those pairs. After a third
list of 18 items was learned, participants were given a drop-off
cycle on all 54 word pairs they had learned. Once completed,
participants were given one final test for all the cue–associate
pairs to confirm which word pairs had actually been learned.
During this last test, participants were not given feedback after
making their response, and items they missed did not appear
again at the end of the cycle. To minimize any potential dif-
ferences in learning between the conditions (e.g., between
negative and neutral items or between the MDD and CTL
groups), all subsequent analyses were restricted to cue–asso-
ciate pairs that were correctly reported on this final learning
test. This allowed us to be sure that any differences we ob-
served were not due to differences in initial learning.

TNT phase For each trial, participants saw a cue from one of
the word pairs (e.g., Street) and were asked to exert control
over the retrieval process. For think trials, they were asked to
recall the associated word (e.g., Corpse). For no-think trials,
their task was to prevent the associated word from entering
consciousness. Participants were not given any specific sug-
gestions about strategies they could use to accomplish this
task. Each retrieval cue was presented for 3 s, and they were
asked to follow the task instructions for the entire time the cue
was presented. Participants were cued to perform either of
these tasks by the color of the cue word: Think cues appeared
in green, and no-think cues were red. Participants completed a
practice block that was 20 trials long and that included only
filler pairs, to get the participants used to the procedure before
scanning began. After this practice phase, they were asked
about their approach to the task and given directed feedback
if they were not performing the task as instructed (e.g., if they
averted their gaze from the retrieval cue or covertly rehearsing
the responses for no-think trials). The actual TNT phase
consisted of six runs of 64 trials each (384 trials total); each
run lasting 5 min 40 s. Each cue was repeated twice during
every block (eight think and eight no-think cues of both va-
lences, each presented twice). The trial order was determined
by Optseq (http://surfer.nmr.mgh.harvard.edu/optseq; Dale,
1999), which pseudorandomly mixed the four conditions
(think–negative, think–neutral, no-think–negative, and no-
think–neutral) and used variable intertrial intervals (0.5–12
s). During the intertrial intervals a fixation cross appeared in
the center of the screen, and participants were instructed to
look at the cross and wait for the next trial to begin.

Test phase After the end of MRI scanning, memory was test-
ed for all word pairs. Participants were administered a brief
practice test that tested only filler word pairs, to make sure that
they understood the task. Then they were given two final
memory tests, the same-probe (SP) and independent-probe
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(IP) tests, with the order of these two tests counterbalanced
across participants. For each test trial, a retrieval cue was pre-
sented for 4 s, and participants were asked to verbally provide
the associated word. The retrieval cue for the SP test was the
cue from the originally studied word pair, and for the IP test it
was a semantically related but unstudied cue along with a two-
letter stem (Fig. 1A).

Behavioral measures

The data from the test phase were analyzed to assess the be-
havioral consequences of attempting to control conscious
awareness of a memory. A 2 × 2 × 2 × 3 mixed analysis of
variance (ANOVA) was utilized, with the between-subjects
factor Group (MDD and CTL) and the within-subjects factors
Test Type (SP, IP), Valence (negative, neutral), and Condition
(think, baseline, no-think). To focus more directly on the key
behavioral measure (i.e., the magnitude of SIF), suppression
scores were calculated by subtracting the recall of no-think
items from the recall of baseline items, within a given valence
and within each test type. This measure provides an index of
how successful participants were at forgetting the avoided
associates, controlling for general forgetting that would be

expected on a delayed memory test. This measure treated
SIF as a positive value, so participants who forgot more of
the no-think items would show larger suppression scores.

MRI data acquisition

Whole-brain imaging data was acquired via a 3.0-T General
Electric Signa MR scanner (Milwaukee, Wisconsin) at the
Richard M. Lucas Center for Imaging at Stanford University
School of Medicine. After a scout scan used for slice prescrip-
tion, high-order shimming was performed for whole-brain
distortion estimation until diminished returns were produced.
Blood-oxygenation-level-dependent (BOLD) functional data
were acquired using an eight-channel, whole-head coil from
31 axial slices with a spiral in–out pulse sequence (Glover &
Law, 2001; TR = 2,000 ms, TE 30ms, flip angle = 80°, FOV=
22 cm, number of frames = 170, in-plane resolution =
3.44mm2, through-plane resolution = 4mm). To anatomically
localize the functional activations, a high-resolution structural
scan (spoiled gradient echo: 156 slices, in-plane resolution =
0.86 × 0.86 mm, through-plane resolution = 1 mm, TE =
3.4 ms, flip angle = 15°, FOV = 22 cm) was collected after
the BOLD scanning runs.

Fig. 1 Behavioral procedure (A) and results (B). (A) During the study
phase, participants learned word pairs until they could provide the asso-
ciated member of each pair when shown the cue word as a retrieval cue.
Then, during the think/no-think (TNT) phase, participants were scanned
while they tried to exert control over memory retrieval. For think trials (in
green during the trial), participants were asked to think of the associated
word. For no-think trials (in red), they were asked to prevent the related
word from entering awareness. Baseline items were not presented during
this phase. After scanning, participants were asked to recall all of the
studied response words, from both the originally studied retrieval cue
(the same-probe test) and from a novel, extralist associate (the

independent-probe test). (B) The critical outcome measure in the TNT
task was the suppression score, which reflected whether or not avoided
memories were recalled more poorly than baseline items (Baseline recall
–No-think recall). Shown here are the suppression scores for both groups
of participants (MDD and CTL), as a function of the valence of the to-be-
suppressed memory (neutral or negative) and the type of final memory
test (SP or IP). Overall, participants tended to forget the no-think items,
and these suppression scores did not vary significantly by group, valence,
or test type. The full set of means for recall in the final test phase are
reported in Table 4. Error bars indicate standard errors of the means
(SEMs).
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FMRI data processing and analysis

Data processing and analysis was conducted using the
Analysis of Functional Neuroimages (AFNI) software suite
(National Institutes of Health; http://afni.nimh.nih.gov/; Cox,
1996) andMATLAB (TheMathWorks Inc., Natick,MA). The
BOLD images were slice-time-corrected, followed by motion
correction with a Fourier interpolation algorithm. Data were
not corrected further if sudden movements were less than
1 mm. A despiking algorithm was used to correct for
movements between 1 and 3 mm by replacing motion-
influenced acquisitions with outlier insensitive estimates.
Specifically, a given TR was defined as an outlier if its
BOLD value was greater than a standard deviation threshold.
Outlier values were then replaced with values from a polyno-
mial fit across all TRs, excluding outliers. Spatial smoothing
was conducted with a Gaussian kernel (full width at half max-
imum= 4mm). The data were high-pass filtered at 1 cycle/min
and converted to percent signal change. Finally, individual
participant maps were converted to the Talairach common
template space (Talairach & Tournoux, 1998), which allowed
for between-group comparisons.

Processed time series data were then submitted to a general
linear model (Friston, Holmes, Worsley, & Poline, 1995) that
included regressors for condition (think and no-think) and
valence (negative and neutral), residual motion, and first-,
second-, and third-order polynomial trends. The regressors
of interest were convolved with a gamma-variate function that
modeled a canonical hemodynamic response before inclusion
in the model (Cohen, 1997), and betas were estimated.

To assess consistency with previous fMRI investigations of
the TNT procedure (e.g., Anderson, 2004), whole-brain maps
were first computed using paired t tests on a voxel-wise basis,
to create contrasts between think and no-think trials. This was
done separately for each group (CTL and MDD) and both
valences (neutral and negative). This allowed us to assess
the extent to which the basic pattern of suppression-related
activations would be observed in each of our contrasts (e.g.,
the MDD group suppressing negative items).

Next, we assessed whether activations differed between the
CTL and MDD groups and between valences. To do this, we
computed voxel-wise mixed ANOVAs with the between-
subjects factor Group (MDD, CTL) and the within-subjects
factors Condition (think, no-think) and Valence (negative,
neutral). We then tested the significance of the two-way inter-
actions between group and condition (within neutral trials) to
identify any regions that were differentially active in theMDD
versus CTL groups during no-think trials. Finally, to also con-
sider valence, we looked for any regions that showed a three-
way interaction of group, condition, and valence. This allowed
us to identify regions that depressed and nondepressed partic-
ipants might recruit differentially during the suppression of
negative material.

All of these analyses were conducted at the whole-brain
level; we had strong a priori interest, however, in the hippo-
campus and the amygdala. Thus, for these regions, we also
conducted analyses with a small-volume correction (SVC),
defined by probabilistic cytoarchitecture maps derived from
postmortem brains (Eickhoff et al., 2005). For a given region,
a voxel was included if at least 50 % of postmortem brains
indicated that the voxel was identified as that region. Given
that these were neighboring regions, a single search space was
created for each hemisphere by combining hippocampal re-
gions (cornu ammonis, entorhinal cortex, dentate gyrus, and
subiculular complex) and amygdalar regions (centromedial,
laterobasal, and superficial groups). The resulting bilateral
hippocampus/amygdala volume was used for SVC, for a total
volume of 23,960 mm3 (2,995 voxels). In the Results section,
we report which clusters were identified in the whole-brain
analysis, and which only survived using the SVC.

To control for multiple hypothesis testing while identifying
significant outcomes, cluster-wise correction was implement-
ed using 10,000 Monte Carlo simulations (Xiong, Gao,
Lancaster, & Fox, 1995) using AFNI’s AlphaSim program.
For whole-brain analyses, the uncorrected voxel significance
threshold was set to p = .005, requiring a cluster of 256 mm3 (k
= 32 voxels) to reach a corrected significance level of p < .05.
To reach a corrected p < .05 significance level in the SVC
analysis of the combined hippocampus/amygdala, the voxel-
wise threshold was set to p < .05, and the required cluster sizes
were 352 mm3 (k = 44 voxels) for left and 368 mm3 (k =
46 voxels) for right hippocampus/amygdala. Thus, both
whole-brain and SVC analyses maintained a family-wise
Type I error rate at p < .05. A more conservative voxel-wise
p-value threshold was adopted for the whole-brain analysis, to
reduce false positives, improve localization, and facilitate in-
terpretation (Chrastil, Sherrill, Hasselmo, & Stern, 2015;
Woo, Krishnan, & Wager, 2014).

To further explore significant the two- and three-way interac-
tions involving group, time courses were extracted from signif-
icant clusters, and summary average signal estimates were com-
puted across the second, third, and fourth time points (TRs 2–4,
encompassing the expected activation peak), consistent with pri-
or studies of the TNT paradigm (e.g., Levy & Anderson, 2012).

Correlational analyses

Prior studies had found that behavioral measures of forgetting
correlated with brain activity in the prefrontal cortex and within
the medial temporal lobes (e.g., Anderson, 2004; Depue et al.,
2007; Levy & Anderson, 2012). Similarly, studies had also
reported correlations between the activity in different brain re-
gions (e.g., Anderson, 2004; Benoit & Anderson, 2012; Depue
et al., 2007), providing insights into how regions might interact
during this task. Therefore, we attempted to replicate these
analyses, but the analyses were inconclusive, so we report them
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only in the supplement (see the Supplemental Results). We also
performed a series of exploratory analyses to explore whether
activity in our regions of interest correlatedwith various clinical
and psychological characteristics (see the Supplemental
Method). Given the exploratory nature of these analyses, we
also report the results of these analyses in the supplement (see
the Supplemental Results).

Results

Participant characteristics

Demographic and clinical characteristics of the MDD and
CTL participants are presented in Table 1. The depressed
and nondepressed groups did not differ in age [t(30) = 0.06,
p = .96], years of education [t(30) = 1.08, p = .29], or gender

[χ2(1, N = 32) = 0.13, p = .72]. As expected, MDD partici-
pants scored higher than did CTL participants on the BDI
[t(30) = 12.0, p < .01]. Additional clinical characteristics for
each of the MDD participants are presented in Table 2.

Learning performance

The drop-off learning procedure ensured that both groups of
participants had learned most of the word pairs by the time they
got to the last practice test (see Table 3). The CTL group
recalled nonsignificantly more words (93.9 %) than did the
MDD group (89.7 %) [t(30) = 1.12, p = .28]. Similarly, the
interaction between group and valence was not significant
[F(1, 30) = 2.07, p = .16]. All subsequent analyses were
conditionalized on learning so as to ensure that the results were
not influenced by learning differences (i.e., the behavioral and
neuroimaging analyses only considered data from word pairs
that were correctly recalled during this final practice test).

Final recall performance

To assess the behavioral consequences of exerting control
over retrieval, we investigated recall performance on the final
memory test as a function of group (MDD and CTL), condi-
tion (think, baseline, and no-think), valence (negative and
neutral), and test type (SP and IP; see Table 4 for the full set
of means). This analysis yielded a main effect of test type
[F(1, 30) = 161.0, p < .001], reflecting better recall on the
SP test (90.9 %) than on the IP test (58.8 %). This effect is

Table 1 Participant demographics

MDD CTL

M SD M SD

Age (Years) 31.5 8.9 31.7 10.0

Education (Years) 14.5 2.5 15.4 2.5

BDI (Total score) 31.1 9.5 1.8 2.2

Female 56.25 % 50 %

MDD = depressed participants; CTL = control participants; BDI = Beck
Depression Inventory I or II

Table 2 MDD participant clinical data

Participant Comorbidity Medication (Daily Dosage
[mg], Duration [Months])

MDD-Related
Hospitalizations

Current Episode
Duration (Months)

Years Since First
Episode

BDI
Score

1 None Buprenorphine (4, 8); Zolpidem
(10, 11)

0 5 17 30

2 None None 0 9 30 29

3 DYS, anxiety disorder NOS Lorazepam (0.5, 120) 1 8 45 22

4 Social phobia None 0 N.R. 30 16

5 None None 0 3 1 38

6 None Lorazepam (2, 18) 0 144 15 29

7 None None 0 2 11 36

8 None Lithium (NR, 24); Fluvoxamine
(300, 24)

1 120 10 24

9 None None 1 1 14 36

10 None None 0 1 23 31

11 GAD None 1 3 20 21

12 None Sertraline (100, 24) 0 1 21 26

13 None None 0 3 23 54

14 None Bupropion (300, 12) 0 3 4 27

15 DYS None 0 2 10 32

16 None Lithium (600, 18) 0 192 16 46

MDD = major depressive disorder; DYS = dysthymia; GAD = generalized anxiety disorder; N.R. = not reported; BDI = Beck Depression Inventory I or II
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not surprising, given that novel semantic associates typically
produce poorer recall than do retrieval cues that were present
at encoding (e.g., Tulving & Thomson, 1973). The analysis
also yielded a main effect of condition [F(2, 60) = 3.77, p <
.05], which reflects the fact that no-think items (71.9 %) were
recalled less frequently than baseline items (76.7 %) [F(1, 30)
= 9.88, p < .005], replicating the basic SIF effect (see
Anderson & Huddleston, 2011). No main effects were obtain-
ed for group or valence (Fs < 1), and none of the possible
interactions were significant.

Although the absence of any significant interactions sug-
gests that SIF was not modulated by group or valence, a lim-
itation of these analyses is that they also included think per-
formance in the condition variable. Our a priori interest was
specifically in differences in SIF, which is defined as the dif-
ference in recall between the no-think and baseline conditions.
Therefore, we also conducted planned comparisons examin-
ing the difference between no-think and baseline suppression
scores (see Fig. 1B), as a function of group and valence.
Contrary to our predictions, the magnitude of these suppres-
sion scores did not interact with any combination of valence,

group, or test type (Fs < 1), consistent with the pattern ob-
served in the overall ANOVA. Thus, we found no evidence of
any differences in SIF as a function of the valence of the words
or depression group status.

FMRI results

For the imaging results, we began by comparing the brain
activity during think and no-think trials, separately for each
group and each valence (see Table 5 and Fig. 2). We did this,
in part, to facilitate comparisons with previous imaging stud-
ies that had used the TNT task (e.g., Anderson, 2004; Benoit
et al., 2015; Butler & James, 2010; Depue et al., 2007;
Gagnepain et al., 2014; Levy & Anderson, 2012). First, we
examined CTL participants and neutral stimuli, because this
condition was most comparable to those in the majority of
prior studies. Importantly, we replicated the typical pattern
of activity: increased activity during no-think trials in prefron-
tal (including inferior and middle frontal gyrus, premotor, and
supplementary motor cortex) and lateral parietal cortex, along
with decreased activity during no-think trials in the medial
temporal lobes and medial parietal cortex. Similarly, when
CTL participants engaged with negative stimuli, a condition
that was explored in two prior studies (Butler & James, 2010;
Depue et al., 2007), we again replicated the patterns described
above. The novelty of the present study, of course, was the
inclusion of MDD participants engaged in the same task as
CTL participants. Here we observed a similar pattern to that in
the CTL group when depressed individuals exerted control
over either neutral or negative stimuli, with all of the key
patterns being replicated in these contrasts. This suggests that
the basic regions involved in memory suppression are broadly
similar across depression statuses and valences. This analysis
was not sufficient, however, to assess whether any group- and
valence-related differenceswould emerge in the neural aspects
of memory suppression. Therefore, we conducted analyses
focused on assessing whether these other factors (Group and
Valence) influence brain activity during the TNT task.

To assess the differences between depressed and nonde-
pressed individuals, we first looked for regions that showed a
two-way interaction of condition (think, no-think) and depres-
sion status (MDD, CTL). We restricted this analysis to neutral
items so we could focus on whether depressed and nonde-
pressed individuals differed in how they approached the task,
without considering the negative stimuli that we expected
would be particularly challenging for depressed individuals.
Although we found no differences in the behavioral conse-
quences of suppression for the two groups of participants, de-
pressed individuals might nevertheless have achieved the same
outcome by recruiting different neural processes than those
recruited by their nondepressed counterparts. We obtained a
significant interaction of group and condition in three clusters
(Table 6), two of which were located in the right middle frontal

Table 4 Recall performance on the final memory tests (conditionalized
on correct initial learning)

MDD CTL

M SD M SD

Same probe Think Neg 89.6 % 11.8 % 93.8 % 15.3 %

Neu 94.6 % 11.6 % 97.7 % 5.0 %

No-think Neg 85.6 % 16.3 % 91.1 % 12.4 %

Neu 84.7 % 18.4 % 89.4 % 12.4 %

Baseline Neg 88.3 % 15.2 % 93.3 % 10.6 %

Neu 90.6 % 13.7 % 92.5 % 8.2 %

Independent probe Think Neg 58.6 % 20.3 % 56.9 % 26.4 %

Neu 61.7 % 17.2 % 54.7 % 27.9 %

No-think Neg 59.7 % 18.2 % 56.4 % 22.2 %

Neu 53.2 % 18.7 % 55.3 % 22.1 %

Baseline Neg 66.0 % 19.7 % 65.7 % 23.1 %

Neu 56.8 % 16.5 % 60.6 % 20.5 %

MDD = depressed participants; CTL = control participants; Neg = nega-
tively valenced words; Neu = neutral words

Table 3 Performance on the final learning test before the TNT phase

MDD CTL

M SD M SD

All associates 89.7 % 11.2 % 93.9 % 8.3 %

Negative associates 87.8 % 14.0 % 93.5 % 9.0 %

Neutral associates 91.7 % 9.3 % 94.3 % 8.0 %

MDD = depressed participants; CTL = control participants
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Table 5 Differences in brain activity between think and no-think trials, separated by group (MDD and CTL) and valence (neutral and negative)

Laterality Region Max t Value Tal L/R, A/P,
I/S (mm)

Cluster Extent (voxels,
1 voxel = 8 mm3)

MDD Group, Neutral Items

No-Think > Think

R Inferior frontal gyrus 5.431 +53.0 +17.0 +4.0 567

R Premotor 5.861 +5.0 +11.0 +58.0 503

R Middle frontal gyrus 6.237 +35.0 +33.0 +34.0 492

R Cingulate 5.586 +7.0 +17.0 +34.0 277

L Inferior frontal gyrus 4.955 –53.0 +15.0 +6.0 244

L Middle frontal gyrus/inferior
frontal gyrus

4.537 –43.0 +27.0 +32.0 125

L Inferior parietal 4.541 –49.0 –41.0 +44.0 117

L Middle frontal gyrus/frontal pole 4.216 –21.0 +47.0 +26.0 76

L Interior temporal pole 5.672 –47.0 –9.0 –34.0 54

L Orbitofrontal 4.412 –17.0 +57.0 –14.0 39

Think > No-Think

L Posterior cingulate –7.425 –11.0 –37.0 +32.0 2,201

L Parieto-occipital –5.161 –5.0 –85.0 +38.0 796

L Medial prefrontal –5.479 –5.0 +27.0 +4.0 418

L Hipppocampus –5.931 –23.0 –33.0 +4.0 266

L Parieto-occipital –5.447 –45.0 –65.0 +24.0 177

L White matter –6.709 –19.0 –21.0 +22.0 133

R White matter –5.345 +13.0 –13.0 +28.0 82

R White matter –4.323 +19.0 –21.0 +22.0 75

L White matter –4.186 –31.0 –57.0 +8.0 63

L White matter –5.497 –17.0 –25.0 +44.0 38

R White matter –3.968 +31.0 –15.0 +28.0 32

CTL Group, Neutral Items

No-Think > Think

L Inferior frontal gyrus 5.286 –43.0 +37.0 +22.0 793

L Inferior frontal gyrus and
middle frontal gyrus

5.087 –39.0 –1.0 +46.0 735

L Supplementary motor area 5.694 –3.0 +19.0 +42.0 397

L Inferior temporal 5.151 –57.0 –57.0 –6.0 228

R Insula 4.448 +5.0 +13.0 +2.0 112

R Premotor 5.086 +13.0 +9.0 +60.0 99

L Inferior parietal 4.120 –41.0 –35.0 +42.0 62

R Temporal pole 4.801 +45.0 +9.0 –16.0 60

L Premotor 3.985 –1.0 +9.0 +60.0 57

L Cerebellum 4.149 –33.0 –51.0 –26.0 39

Think > No-Think

R Posterior cingulate cortex –5.715 +5.0 –35.0 +38.0 568

L White matter –4.515 –25.0 –9.0 +30.0 138

R White matter/posterior medial
temporal lobe

–4.370 +17.0 –23.0 +6.0 120

R Occipital lobe –5.127 +13.0 –89.0 +0.0 108

R Superior frontal gyrus –4.575 +13.0 +33.0 +44.0 93

R Ventral anterior cingulate –6.545 +1.0 +25.0 –6.0 77

R Cingulate gyrus –3.936 +5.0 –13.0 +34.0 73

R Frontal pole –4.225 +3.0 +61.0 +14.0 69

L Cerebellum –4.376 –31.0 –69.0 –28.0 68
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Table 5 (continued)

Laterality Region Max t Value Tal L/R, A/P,
I/S (mm)

Cluster Extent (voxels,
1 voxel = 8 mm3)

R Inferior parietal –3.775 +43.0 –29.0 +24.0 60

MDD Group, Negative Items

No-Think > Think

R Frontal 7.062 +33.0 +31.0 +28.0 2,293

R Premotor 7.183 +7.0 +13.0 +54.0 1,596

L Premotor 6.233 –27.0 +7.0 +42.0 602

L Inferior parietal 5.426 –45.0 –45.0 +44.0 373

L Middle frontal gyrus 7.141 –45.0 +23.0 +36.0 350

R Inferior parietal 4.723 +37.0 –35.0 +38.0 280

L Inferior temporal gyrus 6.470 –57.0 –43.0 –10.0 253

L Inferior frontal gyrus 4.701 –49.0 +17.0 +4.0 245

R Inferior parietal sulcus 5.753 +25.0 –61.0 +42.0 137

L Inferior frontal gyrus 4.285 –37.0 +49.0 –6.0 122

L Inferior frontal gyrus/middle
frontal gyrus

4.638 –43.0 +7.0 +28.0 100

L Inferior temporal gyrus 4.378 –39.0 –53.0 –12.0 84

R White matter 4.021 +17.0 –1.0 +10.0 66

L Orbitofrontal 5.357 –11.0 +19.0 –20.0 48

R Orbitofrontal 5.116 +31.0 +47.0 –8.0 43

R Middle temporal gyrus 4.586 +47.0 –33.0 –4.0 42

R Frontal temporal 4.405 +29.0 +13.0 –18.0 34

Think > No-Think

R Parietal–occipital –6.395 +3.0 –79.0 +38.0 528

R Precuneus –5.223 +15.0 –55.0 +24.0 296

L Precuneus –4.217 –13.0 –55.0 +18.0 195

L Hippocampus –5.608 –29.0 –37.0 +2.0 155

R Brainstem –4.446 +5.0 –35.0 –38.0 50

R White matter –4.448 +1.0 +21.0 +4.0 47

L White matter –4.316 –27.0 –29.0 +24.0 42

L Cingulate –3.775 –7.0 –41.0 +34.0 40

R Cerebellum –4.987 +21.0 –43.0 –34.0 36

R White matter –4.252 +17.0 –37.0 +6.0 32

CTL Group, Negative Items

No-Think > Think

L Frontal 5.428 –39.0 +1.0 +44.0 1,209

R Middle frontal gyrus/superior
frontal gyrus

6.080 +43.0 –1.0 +36.0 817

R Cingulate 4.509 +13.0 +11.0 +38.0 559

L Inferior temporal 4.953 –47.0 –55.0 –4.0 495

L Inferior Parietal 5.432 –43.0 –35.0 +44.0 420

L Inferior frontal gyrus/middle
frontal gyrus

5.762 –29.0 +35.0 +14.0 365

R Inferior frontal gyrus 4.875 +39.0 +25.0 +10.0 300

L Occipital 5.662 –35.0 –85.0 +10.0 206

R Inferior parietal sulcus 5.711 +25.0 –57.0 +44.0 193

R Middle frontal gyrus 4.235 +37.0 +47.0 +26.0 151

L Superior parietal 5.091 –17.0 –67.0 +54.0 98

R Inferior temporal 4.078 +49.0 –71.0 +0.0 79
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Table 5 (continued)

Laterality Region Max t Value Tal L/R, A/P,
I/S (mm)

Cluster Extent (voxels,
1 voxel = 8 mm3)

R Occipital 4.845 +35.0 –83.0 +16.0 65

R Cerebellum 3.894 +33.0 –59.0 –10.0 38

Think > No-Think

L Cingulate –5.841 –1.0 –37.0 +38.0 457

L White matter –5.293 –33.0 –31.0 +4.0 157

R Precuneus –5.519 +9.0 –59.0 +22.0 152

R Hippocampus –4.923 +21.0 –29.0 +2.0 145

R Middle temporal gyrus –5.633 +55.0 –15.0 –8.0 122

R Brainstem –5.567 +3.0 –39.0 –32.0 83

R Cingulate –4.369 +5.0 –17.0 +32.0 73

L Insula –4.380 –39.0 –13.0 +12.0 71

R White matter –4.789 +9.0 +27.0 +0.0 55

R Middle temporal –3.998 +47.0 +3.0 –18.0 40

Fig. 2 Comparison of brain activity during think and no-think trials.
Warm colors indicate increased activity during no-think as compared to
think trials, and cool colors indicate decreased activity during no-think as
compared to think trials. The top three rows depict activity for the MDD
group, and the bottom three rows display data from the CTL group. Each
row represents the valence of the to-be- suppressed item (neutral,

negative, or collapsing across both valence types). In general, the patterns
for both groups and across all combinations of valence resemble prior
findings using this paradigm: No-think trials are associated with increased
activity in prefrontal and parietal regions and decreased activity in the
medial temporal lobes and in medial parietal regions. L = left, R = right
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gyrus (MFG), a region we hypothesized might be engaged
differentially by depressed and nondepressed individuals dur-
ing suppression. To better understand this interaction, we ex-
tracted the time courses from the larger MFG cluster (Fig. 3).

Looking at neutral trials, the interaction is driven by the MDD
group recruiting this region to a greater extent during no-think
than during think trials [F(1, 30) = 9.25, p < .005], whereas the
CTL group showed the opposite pattern [F(1, 30) = 7.49, p <
.05]. Interestingly, although this region was identified on the
basis of neutral trials alone, a similar pattern was observed in
this region during negative trials. Specifically, the MDD group
recruited the region more for no-think than for think trials [F(1,
30) = 6.80, p < .05], but the CTL group did not (F < 1). This
interaction approached significance [F(1, 30) = 3.66, p = .06],
providing weak support for the formulation that the right MFG
is recruited during suppression more by depressed than by non-
depressed participants, and it does so in an independent (i.e.,
noncircular) comparison.

Next we examined whether the depressed and nondepressed
participants differed in suppression-related activity when the
valence of the to-be-suppressed item was manipulated. To do
this, we looked for any region that showed a three-way interac-
tion of group, condition, and valence. No regions emerged in
this analysis at the whole-brain level; however, given our a
priori interest in the hippocampus and amygdala, we conducted
the same analysis within a small-volume-corrected search space
based on probabilistic atlases of these areas. This analysis re-
vealed clusters in both the right and left hemispheres (Fig. 4A)
that spanned both the amygdala and the anterior portion of the
hippocampus. To further investigate this three-way interaction,
we extracted the time courses from a mask combining the two
clusters (the locations were similar in both hemispheres, as was
the ordering of the conditions). This analysis revealed that the
MDD group modulated activity in this region, as evidenced by
decreased activity during no-think relative to think trials, signif-
icantly for neutral items [F(1, 30) = 10.69, p < .005], but not for
negative items (F < 1). Control participants showed significant
modulation for negative items [F(1, 30) = 4.06, p = .05], but not
for neutral items [F(1, 30) = 1.62, p = .21]. Importantly, how-
ever, the two-way interaction between condition and valence
within each group was not significant for either MDDs [F(1,
30) = 1.94, p = .17] or control participants (F < 1).

Discussion

The present experiment was the first fMRI study to investigate
whether and how depressed individuals differ from their

Table 6 Brain regions identified
by the two-way interaction of
condition (Think and No-Think)
and group (MDD and CTL) for
neutral items only

Laterality Region Max F Stat Tal L/R, A/P, I/S (mm) Cluster Extent (voxels,
1 voxel = 8 mm3)

R MFG 13.772 29, 29, 38 137

L Ventral striatum/white matter 29.694 –13, –1, –6 53

R MFG/SFG 17.564 21, 55, 30 37

Fig. 3 The MDD group, but the not CTL group, activated the right
middle frontal gyrus (MFG) during memory suppression. (A) This cluster
(Talairach coordinates: 29 [R], 29 [A], 38 [S]; 1,136 mm3, 142 voxels)
was identified by a whole-brain analysis looking for regions that showed
a group (MDD or CTL) by condition (think or no-think) interaction (lim-
ited to neutral trials). (B) The percent signal change was then extracted
from this cluster for each condition to further examine this interaction.
This revealed that the MDD group recruited this region more during no-
think than during think trials, whereas control participants did not. This
pattern held for both neutral trials, which had been used to identify the
cluster, and for an independent (noncircular) analysis of the negative
trials. Error bars indicate standard errors of the means (SEMs). L = left,
R = right
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nondepressed counterparts in suppressing unwanted memo-
ries. Although we did not observe the expected behavioral
impairment in memory suppression for MDD participants,
we did find indications in the neuroimaging data concerning
how they achieved memorial control. First, depressed individ-
uals were more likely than controls to recruit the right MFG
when required to suppress a memory. Second, when we con-
sidered the valence of the to-be-suppressed information, the
MDD and CTL groups differed in how they modulated activ-
ity in the targets of memorial control, specifically the amyg-
dala and hippocampus. These findings point to potential dif-
ferences between depressed and nondepressed individuals that
expand on prior work documenting deficits in inhibitory con-
trol in depressed individuals engaged inWM tasks (see Gotlib
& Joormann, 2010).

Researchers have consistently reported that lateral prefron-
tal cortex (PFC) is engaged during memory suppression
(Anderson, 2004; Benoit & Anderson, 2012; Benoit et al.,
2015; Butler & James, 2010; Depue et al., 2007; Gagnepain
et al., 2014; Levy & Anderson, 2012). This activation often
spans both the ventral and dorsal aspects: the inferior frontal
gyrus and MFG, respectively. Investigators have generally
interpreted these lateral PFC activations as reflecting control
processes that are engaged to prevent the unwanted memory
from entering awareness (see, e.g., Anderson & Hanslmayr,
2014; Anderson & Levy, 2009). Although we found evidence
broadly consistent with this general pattern in both the de-
pressed and nondepressed groups, we observed engagement
of a specific region within the right MFG that was specific to

depressed individuals. Interestingly, this region appears to be
anterior and superior to the right-MFG activations that are
often seen in univariate contrasts in nondepressed participants.
One possibility is that this is a distinct region that is recruited
by depressed participants to suppress unwanted memories.
Another possibility, which is not mutually exclusive of the
first, is that the difference could reflect differential use of
suppression strategies by the two groups. Participants in the
TNT task report using a wide range of strategies (e.g., thinking
of diversionary thoughts or attempting to let their mind go
blank; see Levy & Anderson, 2008), and when participants
are instructed to use different strategies, we observe differ-
ences in the recruitment of specific prefrontal regions
(Benoit & Anderson, 2012). Benoit and Anderson found that
participants selectively recruited a region near this area when
they engaged in a direct suppression strategy in which they
attempted to stop retrieval without generating alternative
thoughts. Because in this study we did not instruct participants
to use any specific strategy or ask them to report which strat-
egies they used, we do not know whether the two groups used
similar strategies to complete the task. One surprising aspect
of this finding is that it reflects increased activity in MDD
participants, whereas we predicted that PFC should be
hypoactive for these individuals. In retrospect, however, we
note that there have been widespread observations of height-
ened PFC recruitment in depression (e.g., Bär et al., 2007;
Diener et al., 2012; Grimm et al., 2008; Harvey et al., 2005;
Wagner et al., 2006; Walter, Wolf, Spitzer, & Vasic, 2007).
Interestingly, Harvey et al. 2005 suggested that this

Fig. 4 Modulation of the targets of memory control differs across
depression statuses and valences. (A) Using a small-volume correction,
a three-way interaction between group, valence, and condition was iden-
tified in clusters that encompassed the amygdala and anterior hippocam-
pus in both the right hemisphere (Talairach coordinates: 21 [R], –9 [P], –
14 [I]; 824 mm3, 103 voxels) and the left hemisphere (Talairach coordi-
nates: –19 [L], –5 [P], –18 [I]; 704 mm3, 88 voxels). (B) The percent

signal change was then extracted from a combined bilateral hippocam-
pal–amygdala cluster for each condition, to further examine this interac-
tion. This revealed that the MDD group showed the typical suppression-
related down-regulation of this region during neutral trials, but not during
negative trials. The CTL group showed the opposite pattern, with suc-
cessful down-regulation for negative items. Error bars indicate standard
errors of the means (SEMs). L = left, R = right
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hyperactivity is most likely to be observed when behavioral
performance is matched to healthy controls, as was the case
here, suggesting that this is a form of compensatory recruit-
ment (e.g., perhaps due to strategy differences, as suggested
above). Further research will be needed to replicate this unex-
pected pattern and to gain greater leverage on what this region
contributes during the task.

In addition to increased PFC activity during suppression, it
is also typical to observe decreased activity in the medial
temporal lobes (Anderson, 2004; Benoit & Anderson, 2012;
Benoit et al., 2015; Depue et al., 2007; Gagnepain et al., 2014;
Levy & Anderson, 2012). This finding is often interpreted as
indicating that the medial temporal lobes are a target of frontal
cognitive control, and that their activation is down-regulated,
which results in an override of their role in recovering infor-
mation from long-term memory (e.g., Anderson &
Hanslmayr, 2014; Anderson & Levy, 2009). In addition, there
is evidence that when participants attempt to suppress nega-
tively valenced information, they also down-regulate activity
in the amygdala (Butler & James, 2010; Depue et al., 2007). In
the present study, we observed a cluster in both hemispheres
that included the amygdala as well as the hippocampus and
that activated differentially in the depressed and nondepressed
groups to the different valences. Across all combinations of
valence and group, think activity in this region was numeri-
cally greater than no-think activity, consistent with prior evi-
dence that these regions are modulated during suppression.
The three-way interaction appears to reflect the differential
effectiveness of this modulation between the groups for the
two different valence conditions: Specifically, nondepressed
participants were relatively more successful at modulating this
region when suppressing negative materials, and depressed
participants were relatively more successful when suppressing
neutral stimuli. We expected that depressed individuals would
have the most difficulty suppressing memories of negative
experiences, so this pattern is broadly consistent with our
predictions.2

It is interesting to note that we did not observe any
significant behavioral differences between the depressed
and nondepressed participants. This may not be surpris-
ing, given that other studies have also failed to observe
significant SIF impairments in depressed and dysphoric
populations (Hertel & Calcaterra, 2005; Joormann et al.,
2009). Interestingly, the studies that have reported no sig-
nificant differences in SIF as a function of depression
status have tended to have smaller sample sizes than the
studies that have reported significant differences, a con-
cern that is also relevant to the present s tudy.

Interestingly, we did observe numerically greater SIF in
CTLs than in MDDs on the IP test (7.3 % vs. 5.0 %,
respectively, collapsed across valences), which has been
argued to be more sensitive than the SP test for assessing
inhibitory control ability (Anderson & Levy, 2011). When
considering all of the behavioral evidence, it appears that
the inhibitory impairments in this paradigm may be rela-
tively modest. Similarly, despite our emphasis on the re-
gions that differed between controls and depressed indi-
viduals, there was considerable similarity in the general
patterns of brain activity observed in these two groups of
participants, which is again consistent with the position
that differences on this task due to suppression are sub-
tle.3 That does not mean, however, that any differences
would be unimportant for increasing our understanding of
depression. Indeed, even small impairments in the
moment-to-moment regulation of retrieval could com-
pound dramatically, given the many retrieval opportuni-
ties that are present in everyday life. For example, we
know that retrieval itself acts as a powerful learning event
(see, e.g., Karpicke, 2012); thus, each instance of failed
retrieval suppression could lead to that unwanted thought
being encoded better in long-term memory and, in MDDs,
contributing to negative schemas that have been posited to
perpetuate the negative cognitions that are fundamental to
this disorder (Beck, 1976). It is also important to note
that, consistent with prior studies using this paradigm
(Hertel & Gerstle 2003; Joormann et al., 2005), we did
not observe any evidence of diminished forgetting of neg-
ative material by the depressed individuals. Although in-
dividual null results can be inconclusive, the repeated
failure to confirm this prediction seems to be at odds with
other evidence suggesting that depressed individuals have
particular difficulty suppressing negative stimuli (for a
review, see Gotlib & Joormann, 2010). Interestingly, all
of the extant TNT studies have used verbal stimuli, which
may not produce as strong an affective modulation as
contextually richer stimuli (e.g., photographs). Perhaps
future studies could use valenced picture stimuli (see
Depue, Banich, & Curran, 2006; Depue et al., 2007) with
these populations to further explore this issue.

In closing, our findings suggest that depressed and nonde-
pressed individuals differ in their brain activity when they are
asked to suppress memory retrieval. A fruitful next step would
be to further explore the regions implicated in this study, to
elucidate their mechanistic contributions to this task. This area
of inquiry could also benefit from a behavioral study with a
larger sample, in order to better characterize the magnitude

2 It should be noted that the two-way interaction between valence and
condition in this region was not significant for the MDDs, so we cannot
say that individuals in the MDD group modulated this region more for
neutral than for negative items.

3 We did not, however, examine functional or effective connectivity be-
tween regions. Thus, it is possible that despite similar univariate patterns,
connectivity patternsmight differ between groups. Future research should
directly assess the relations between brain connectivity and suppression.
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and consistency of depression-associated behavioral impair-
ments in this task. It would also be instructive to examine the
brain activity as depressed individuals are provided with an
explicit strategy to perform the suppression task. Previous
research has suggested that Baided^ strategies, in which an
alternative diversionary thought is used, can help depressed
individuals overcome deficits in SIF (Hertel & Calcaterra,
2005; Joormann et al., 2009), and can also change the pattern
of brain activity in nondepressed individuals (Benoit &
Anderson, 2012; Bergström, de Fockert, & Richardson-
Klavehn, 2009). Finally, this line of research could help bridge
two features that are often discussed as distinct aspects of
depression: impaired inhibitory control and rumination. As
we discussed earlier, most of the evidence for impaired inhi-
bition in depression has focused on how items enter or are
removed from WM. This has obvious implications for how
individuals might encode new experiences, but it tells us rel-
atively little about how they deal with existing long-term
memories of their own experiences, which are precisely the
kinds of events about which depressed individuals are likely
to ruminate. Indeed, in an unselected sample of undergraduate
students, levels of rumination were found to be related to
impaired suppression-induced forgetting, even when control-
ling for deliberate reprocessing, which is related to both rumi-
nation and suppression (Fawcett et al., 2015; Joormann &
Tran, 2009). Furthermore, Hertel and Gerstle (2003) found
that dysphoric individuals who were high in rumination ex-
hibited reduced SIF as compared to lower-ruminating dys-
phoric individuals. These findings implicate rumination as a
key component of SIF abnormalities in MDD. Gaining a bet-
ter understanding of how depressed individuals struggle to
control access to memory will not only help elucidate the core
features of depression, but may be relevant for other disorders
that also involve difficulty controlling unwanted thoughts
(e.g., Brewin, Gregory, Lipton, & Burgess, 2010; Catarino,
Kupper, Werner-Seidler, Dalgleish, & Anderson, 2015;
Depue, Burgess, Bidwell, Willcutt, & Banich, 2010; Koob
& Volkow 2009; Marzi, Regina, & Righi, 2014; Verfaellie &
Vasterling, 2009).
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