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prediction. However, due to data privacy regulations or limited accessibility to
large datasets across the world, it is challenging to efficiently integrate dis-
tributed information. Here we propose a novel classification framework through
multi-site weighted LASSO: each site performs an iterative weighted LASSO
for feature selection separately. Within each iteration, the classification result
and the selected features are collected to update the weighting parameters for
each feature. This new weight is used to guide the LASSO process at the next
iteration. Only the features that help to improve the classification accuracy are
preserved. In tests on data from five sites (299 patients with major depressive
disorder (MDD) and 258 normal controls), our method boosted classification
accuracy for MDD by 4.9% on average. This result shows the potential of the
proposed new strategy as an effective and practical collaborative platform for
machine learning on large scale distributed imaging and biobank data.

Keywords: MDD - Weighted LASSO

1 Introduction

Major depressive disorder (MDD) affects over 350 million people worldwide [1] and
takes an immense personal toll on patients and their families, placing a vast economic
burden on society. MDD involves a wide spectrum of symptoms, varying risk factors,
and varying response to treatment [2]. Unfortunately, early diagnosis of MDD is
challenging and is based on behavioral criteria; consistent structural and functional
brain abnormalities in MDD are just beginning to be understood. Neuroimaging of
large cohorts can identify characteristic correlates of depression, and may also help to
detect modulatory effects of interventions, and environmental and genetic risk factors.
Recent advances in brain imaging, such as magnetic resonance imaging (MRI) and its
variants, allow researchers to investigate brain abnormalities and identify statistical
factors that influence them, and how they relate to diagnosis and outcomes [12].
Researchers have reported brain structural and functional alterations in MDD using
different modalities of MRI. Recently, the ENIGMA-MDD Working Group found that
adults with MDD have thinner cortical gray matter in the orbitofrontal cortices, insula,
anterior/posterior cingulate and temporal lobes compared to healthy adults without a
diagnosis of MDD [3]. A subcortical study — the largest to date — showed that MDD
patients tend to have smaller hippocampal volumes than controls [4]. Diffusion tensor
imaging (DTI) [5] reveals, on average, lower fractional anisotropy in the frontal lobe
and right occipital lobe of MDD patients. MDD patients may also show aberrant
functional connectivity in the default mode network (DMN) and other task-related
functional brain networks [6].

Even so, classification of MDD is still challenging. There are three major barriers:
first, though significant differences have been found, these previously identified brain
regions or brain measures are not always consistent markers for MDD classification [7];
second, besides T1 imaging, other modalities including DTI and functional magnetic



Classification of Major Depressive Disorder via Multi-site Weighted LASSO Model

Site-/

Raw Data  Brain Measures!

| N

Raw Data  Brain Measures

;@—»mé

: N 2

Lig]ms]|

'[ Weighted LASSO + Classification ]
|

I
i{| Weighted LASSO + Classification ]

161

: Raw Data  Brain Measures!
I
I

I
'[ Weighted LASSO + Classification ]

I
I
I
I
I
|
1

______ e | —, — —_
Selected Featuresf 4~ Selected Features [ 4% Selected Features|
+ Updated i Updated + Updated
Classification Weights Classification Weights Classification Weights
Result Result Result N
[ Weight Generator

Fig. 1. Overview of our proposed framework.

resonance imaging (fMRI) are not commonly acquired in a clinical setting; last, it is not
always easy for collaborating medical centers to perform an integrated data analysis
due to data privacy regulations that limit the exchange of individual raw data and due to
large transfer times and storage requirements for thousands of images. As biobanks
grow, we need an efficient platform to integrate predictive information from multiple
centers; as the available datasets increase, this effort should increase the statistical
power to identify predictors of disease diagnosis and future outcomes, beyond what
each site could identify on its own.

In this study, we introduce a multi-site weighted LASSO (MSW-LASSO) model to
boost classification performance for each individual participating site, by integrating
their knowledge for feature selection and results from classification. As shown in
Fig. 1, our proposed framework features the following characteristics: (1) each site
retains their own data and performs weighted LASSO regression, for feature selection,
locally; (2) only the selected brain measures and the classification results are shared to
other sites; (3) information on the selected brain measures and the corresponding
classification results are integrated to generate a unified weight vector across features;
this is then sent to each site. This weight vector will be applied to the weighted LASSO
in the next iteration; (4) if the new weight vector leads to a new set of brain measures
and better classification performance, the new set of brain measures will be sent to
other sites. Otherwise, it is discarded and the old one is recovered.

2 Methods

2.1 Data and Demographics

For this study, we used data from five sites across the world. The total number of
participants is 557; all of them were older than 21 years old. Demographic information
for each site’s participants is summarized in Table 1.
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Table 1. Demographics for the five sites participating in the current study.

D. Zhu et al.

Sites Total | Total N of MDD | Total N of Age of Controls Age of MDD % %o
N patients (%) Controls (%) | (Mean + SD; y) (Mean + SD; y) | Female | Female
MDD Total
1 | Groningen | 45 22 (48.89%) 23 (51.11%) | 42.78 + 14.36 43.14 £ 13.8 72.73 73.33
2 | Stanford 110 54 (49.09%) 56 (50.91) 38.17 £ 9.97 37.75 £ 9.78 57.41 60.00
3 | BRCDECC | 130 69 (53.08%) 61 (46.92%) | 51.72 + 7.94 47.85 £+ 891 68.12 60.77
4 | Berlin 172 101 (58.72%) 71 (41.28%) | 41.09 £+ 12.85 41.21 + 11.82 64.36 60.47
5 | Dublin 100 53 (53%) 47 (47%) 38.49 £+ 12.37 41.81 + 10.76 62.26 57.00
Combined | 557 299 (53.68%) 258 (46.32%)

2.2 Data Preprocessing

As in most common clinical settings, only T1-weighted MRI brain scans were acquired
at each site; quality control and analyses were performed locally. Sixty-eight (34 left/34
right) cortical gray matter regions, 7 subcortical gray matter regions and the lateral
ventricles were segmented with FreeSurfer [8]. Detailed image acquisition,
pre-processing, brain segmentation and quality control methods may be found in [3, 9].
Brain measures include cortical thickness and surface area for cortical regions and
volume for subcortical regions and lateral ventricles. In total, 152 brain measures were
considered in this study.

2.3 Algorithm Overview
To better illustrate the algorithms, we define the following notations (Tables 2 and 3):

F;: The selected brain measures (features) of Site-i;

A;: The classification performance of Site-i;

W: The weight vector;

w-LASSO (W, D;): Performing weighted LASSO on D; with weight vector — W;
SVM ( F;, D;): Performing SVM classifier on D; using the feature set - Fj;

BRIl

The algorithms have two parts that are run at each site, and an integration server. At
first, the integration server initializes a weight vector with all ones and sends it to all
sites. Each site use this weight vector to conduct weighted LASSO (Sect. 2.6) with
their own data locally. If the selected features have better classification performance, it
will send the new features and the corresponding classification result to the integration
server. If there is no improvement in classification accuracy, it will send the old ones.
After the integration server receives the updates from all sites, it generates a new
weight vector (Sect. 2.5) according to different feature sets and their classification
performance. The detailed strategy is discussed in Sect. 2.5.
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Table 2. Main steps of Algorithm 1.

Algorithm 1 (Integration Server)

Initialize W (with all features weighted as one)
Send W to all sites
while at least one site has improvement on 4

update W (Section 2.5)

Send W to all sites
end while
Send W with null to all sites

Nk Wb~

Table 3. Main steps of Algorithm 2.

Algorithm 2 (Site-i)

Fe@,A,<0
while received W is not null
F, « w-LASSO (W, D;) (Section 2.6)
ifF, £ F,
A, < SVM (F;, Dy
if Ay > A;
send F; and A to Integration Server
Fi < F, A < 4
9. else send F; and A; to Integration Server
10. end if
11. end if
12. end while

PN R WD

2.4 Ordinary LASSO and Weighted LASSO

LASSO [10] is a shrinkage method for linear regression. The ordinary LASSO is
defined as:

o~

B(LASSO) = arg minHy - Z?:l xiP; 2 +7»Zin:l |Bil (1)

y and x are the observations and predictors. A is known as the sparsity parameter. It
minimizes the sum of squared errors while penalizing the sum of the absolute values of
the coefficients - . As LASSO regression will force many coefficients to be zero, it is
widely used for variable selection [11].

However, the classical LASSO shrinkage procedure might be biased when esti-
mating large coefficients [12]. To alleviate this risk, adaptive LASSO [12] was
developed and it tends to assign each predictor with different penalty parameters. Thus
it can avoid having larger coefficients penalized more heavily than small coefficients.
Similarly, the motivation of multi-site weighted LASSO (MSW-LASSO) is to penalize
different predictors (brain measures), by assigning different weights, according to its
classification performance across all sites. Generating the weights for each brain
measure (feature) and the MSW-LASSO model are discussed in Sects. 2.5 and 2.6.
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2.5 Generation of a Multi-site Weight

In Algorithm 1, after the integration server receives the information on selected features
(brain measures) and the corresponding classification performance of each site, it
generates a new weight for each feature. The new weight for the f feature is:

Wy =" W AP/m (2)
W, 1, if the f feature was selected in site — s (3)
sf 0, otherwise

Here m is the number of sites. Ay is the classification accuracy of site-s. P; is the
proportion of participants in site-s relative to the total number of participants at all sites.
Equation (3) penalizes the features that only “survived” in a small number of sites. On
the contrary, if a specific feature was selected by all sites, meaning all sites agree that
this feature is important, it tends to have a larger weight. In Eq. (2) we consider both
the classification performance and the proportion of samples. If a site has achieved very
high classification accuracy and it has a relatively small sample size compared to other
sites, the features selected will be conservatively “recommended” to other sites. In
general, if the feature was selected by more sites and resulted in higher classification
accuracy, it has larger weights.

2.6 Multi-site Weight LASSO
In this section, we define the multi-site weighted LASSO (MSW-LASSO) model:

Y (1 waAm) B (4)

Here x; represents the MRI measures after controlling the effects of age, sex and
intracranial volume (ICV), which are managed within different sites. y is the label
indicating MDD patient or control. n is the 152 brain measures (features) in this study.
In our MSW-LASSO model, a feature with larger weights implies higher classification
performance and/or recognition by multiple sites. Hence it will be penalized less and
has a greater chance of being selected by the sites that did not consider this feature in
the previous iteration.

~ . n
BMswaasso = arg Il’lll’lHy - E i=1 X Bi

3 Results

3.1 Classification Improvements Through the MSW-LASSO Model

In this study, we applied Algorithms 1 and 2 on data from five sites across the world. In
the first iteration, the integration server initialized a weight vector with all ones and sent
it to all sites. Therefore, these five sites conducted regular LASSO regression in the first
round. After a small set of features was selected using similar strategy in [9] within
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each site, they performed classification locally using a support vector machine
(SVM) and shared the best classification accuracy to the integration server, as well as
the set of selected features. Then the integration server generated the new weight
according to Eq. (2) and sent it back to all sites. From the second iteration, each site
performed MSW-LASSO until none of them has improvement on the classification
result. In total, these five sites ran MSW-LASSO for six iterations; the classification
performance for each round is summarized in Fig. 2(a-e).
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Fig. 2. Applying MSW-LASSO to the data coming from five sites (a-e). Each subfigure shows
the classification accuracy (ACC), specificity (SPE) and sensitivity (SEN) at each iteration.
(f) shows the improvement in classification accuracy at each site after performing MSW-LASSO.

Though the Stanford and Berlin sites did not show any improvements after the
second iteration, the classification performance at the BRCDECC site and Dublin
continued improving until the sixth iteration. Hence our MSW-LASSO terminated at
the sixth round. Figure 2f shows the improvements of classification accuracy for all
five sites - the average improvement is 4.9%. The sparsity level of the LASSO is set as
16% - which means that 16% of 152 features tend to be selected in the LASSO process.
Section 3.3 shows the reproducibility of results with different sparsity levels. When
conducing SVM classification, the same kernel (RBF) was used, and we performed a
grid search for possible parameters. Only the best classification results are adopted.

3.2 Analysis of MSW-LASSO Features

In the process of MSW-LASSO, only the new set of features resulting in improvements
in classification are accepted. Otherwise, the prior set of features is preserved. The new
features are also “recommended” to other sites by increasing the corresponding weights
of the new features. Figure 3 displays the changes of the involved features through six
iterations and the top 5 features selected by the majority of sites.

At the first iteration, there are 88 features selected by five sites. This number
decreases over MSW-LASSO iterations. Only 73 features are preserved after six
iterations but the average classification accuracy increased by 4.9%. Moreover, if a
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Fig. 3. (a) Number of involved features through six iterations. (b-f) The top five consistently
selected features across sites. Within each subfigure, the top showed the locations of the
corresponding features and the bottom indicated how many sites selected this feature through the
MSW-LASSO process. (b-c) are cortical thickness and (d-f) are surface area measures.

feature is originally selected by the majority of sites, it tends to be continually selected
after multiple iterations (Fig. 3d-e). For those “promising” features that are accepted by
fewer sites at first, they might be incorporated by more sites as the iteration increased
(Fig. 2b-c, 1).

3.3 Reproducibility of the MSW-LASSO

For LASSO-related problems, there is no closed-form solution for the selection of
sparsity level; this is highly data dependent. To validate our MSW-LASSO model, we
repeated Algorithms 1 and 2 at different sparsity levels, which leads to preservation of
different proportions of the features. The reproducibility performance of our proposed
MSW-LASSO is summarized in Table 4.

Table 4. Reproducibility results with different sparsity levels. The column of selected features
represents the percentage of features preserved during the LASSO procedure, and the average
improvement in accuracy, sensitivity, and specificity by sparsity.

Selected Features | Improvement, Selected features | Improvement,

in % in %

ACC | SPE | SEN ACC | SPE | SEN
13% 31 |18 |44 |33% 26 |31 |25
20% 39 14 |60 |36% 1.7 |21 |15
23% 38 129 |44 [40% 25 |41 |14
26% 43 |34 |52 |43% 31 |11 |50
30% 29 |3.0 |29 |46% 2.8 139 |19
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4

Conclusion and Discussion

Here we proposed a novel multi-site weighted LASSO model to heuristically improve
classification performance for multiple sites. By sharing the knowledge of features that
might help to improve classification accuracy with other sites, each site has multiple
opportunities to reconsider its own set of selected features and strive to increase the
accuracy at each iteration. In this study, the average improvement in classification
accuracy is 4.9% for five sites. We offer a proof of concept for distributed machine
learning that may be scaled up to other disorders, modalities, and feature sets.
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