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ABSTRACT 

Compared to many neurological disorders, for which imaging biomarkers are often available, there are no accepted 

imaging biomarkers to assist in the diagnosis of major depressive disorder (MDD). One major barrier to understanding 

MDD has been the lack of a practical and efficient platform for collaborative efforts across multiple data centers; 

integrating the knowledge from different centers should make it easier to identify characteristic measures that are 

consistently associated with the illness. Here we applied our newly developed “distributed Lasso” method to brain MRI 

data from multiple centers to perform feature selection and classification. Over 1,000 participants were involved in the 

study; our results indicate the potential of the proposed framework to enable large-scale collaborative data analysis in the 

future. 
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1. INTRODUCTION 

Major depressive disorder (MDD) is a prevalent psychiatric condition, and affects over 350 million people worldwide 

[1]. Important advances have been made in understanding abnormal structural and functional brain correlates of emotion 

processing and regulation in individuals with MDD [2-4]. For example, the ENIGMA-MDD Working Group recently 

found that compared to healthy adults without a diagnosis of MDD, adults with MDD tend to have thinner cortical gray 

matter in the anterior and posterior cingulate, insula, orbitofrontal cortices and temporal lobes [2]. A prior study of 

subcortical structures showed that MDD patients have significantly smaller hippocampal volumes than do controls [3]. 

Despite this, the identification of specific regions or networks that discriminate between MDD and controls remains an 

important but unmet goal. Clinically, it is recognized that traditional qualitative radiological methods are not able to 

distinguish neuroanatomical scans of patients with MDD from healthy controls; therefore, diagnoses are made based on 

clinical evaluations. However, identifying brain imaging markers of depression could help to identify mechanisms of risk 

and lead to improvements in evaluating therapeutic interventions and patient outcomes. 

There have been several successful attempts to classify MDD patients versus matched healthy controls using imaging-

based features [5-7]. Using T1-weighted 3D brain MRI data, one study [5] combined voxel-based morphometry with a 
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univariate analysis to select features to classify MDD patients relative to controls, at two institutions. Another study [6] 

developed an unsupervised machine learning algorithm to identify functional connectivity differences between MDD 

patients and normal controls. Although both studies achieved a very high (90%) classification accuracy, the MDD 

sample sizes were small (N<35), limiting generalizability. This reflects a practical obstacle in MDD studies: each center 

is typically limited in terms of available data and computational resources. An efficient platform is needed for 

collaborative efforts across multiple data centers to integrate information and increase statistical power for data analysis. 

In this paper, we applied our newly developed “distributed Lasso” method to data from multiple imaging centers to 

select features for classifying patients and controls, without compromising individual data privacy. Our data came from 3 

cohorts that participate in the ENIGMA MDD consortium, including CODE, Muenster, and Stanford [2-3]. The total 

sample size is 1072: 370 MDD patients and 702 healthy controls. To the best of our knowledge, this is the largest study 

to date that has used brain MRI features for MDD classification. 

2. METHODS 

2.1 Overview 

The general idea of the method is shown in Figure 1. Suppose we have multiple data centers (center-1 to center-m) that 

may be geographically distributed across the world. Each center manages its own raw imaging data and computes 

standard measures from brain MRI including regional measures of cortical thickness, cortical surface areas, and 

subcortical volumes. Through our distributed Lasso algorithm, local gradient information is first computed based on 

local data. In other words, the models that predict diagnosis at each site, are fitted using an algorithm in which model 

parameters are iteratively updated by assessing the gradient of the classification error with respect to the model 

parameters. The gradients of the model parameters at each site are then combined to generate the overall gradient that is 

then sent back to each data center for updating. After 1,000 runs, a smaller set of brain measures (features) is selected 

from the Lasso regression model; these are used for classification. During this Lasso regression and classification 

process, each center does not need to share its raw data with other centers. This requirement can be advantageous, 

especially when datasets are too large to send to a central site, or when data privacy laws do not allow individual data 

transfer.   

 

 

Figure 1. Overview of our proposed framework. Images from each center are consistently processed to compute a large set 

of standard brain measures. This set is reduced by using a distributed Lasso method that takes into account information from 

multiple centers, without sharing individual level data. The selected features are then combined using a multi-layer 

perceptron to perform classification of individuals as MDD or healthy controls.  

2.2 Subjects and brain measures 

Based on data from 3 ENIGMA-MDD cohorts: CODE, Muenster and Stanford [2-3], 54 of 156 brain measures and 251 
of 1323 subjects were removed due to missing data. Demographic data for each center’s participants are summarized in 
Table 1. Detailed image acquisition, pre-processing and FreeSurfer-derived brain segmentation and quality control 
methods have been previously published and may be found in [2-3].  

Table 1. Demographics of three cohorts participating in the ENIGMA-MDD consortium. 

  Adult samples 

Study Sample Age of 

Controls 

Age of MDD 

patient 

% Female 

Controls 

% Female 

MDD 

Total N 

Controls 

Total N 

MDD 
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(Mean ± SD) (Mean ± SD) 

1 CODE 40.3 ± 13.0 41.1 ± 12.2 57 69 61 87 

2 Muenster cohort 34.9 ± 12.0 38.2 ± 12.0 58 58 588 233 

3 Stanford 37.5 ± 10.8 37.6 ±  10.1 62 58 53 50 

 Combined     702 370 

 

2.3 Classical Lasso formulation  

Lasso is one of the most widely-used high-dimensional regression techniques for variable selection; it uses a sparse 

representation to enhance prediction accuracy. The general idea of Lasso is to minimize the sum of squared errors by 

forcing a proportion of the predictors’ coefficients to be zero and restricting the sum of absolute value of all the 

regression coefficients to be less than a fixed value, e.g., 1. Classical Lasso regression is defined by the following 

equation: 

 

                                                                  min
𝑥

1

2
 ‖𝐴𝑥 − 𝑦‖2

2 + 𝜆 ‖𝑥‖1 : x∈ ℝ𝑝                                                                  (1) 

 
In this paper, A represents the brain measures (after regressing out effects of age, sex, site, and ICV for the cortical 

surface area and subcortical volume measures), which are distributed across different data centers. y is the response 

vector indicating if the participant is an MDD patient or control. x is the regression coefficient shared between centers. 𝜆 

is a positive regularization parameter. After optimization using equation (1), the coefficients for some brain measures 

will shrink to zero, and they will be excluded from the classification task in the next stages. 

2.4 Distributed Lasso 

Recently, we proposed a novel “distributed Lasso” algorithm to learn a consistent model to rank genomic variants in 
terms of their predictive value across different institutions without compromising individual data privacy [8]. In the 
current paper, we applied a similar strategy to perform feature selection. As illustrated in Fig. 1, we have m data centers. 
For the 𝑖𝑡ℎ center, we use (𝐴𝑖, 𝑦𝑖) to represent the data set that it provides, where 𝐴𝑖 ∈ ℝ𝑛𝑖×𝑝 and 𝑦𝑖  ℝ𝑛𝑖×1. 𝑛𝑖 is the 
number of participants at this center and p is the number of brain measures (all subjects are assumed to have the same 
number, p). Our goal is to learn the predictor weightings or coefficients – x by solving problem (1) on distributed data 
sets - (𝐴𝑖, 𝑦𝑖). 

In order to solve equation (1), we applied Iterative Shrinkage/Thresholding Algorithm (ISTA) [9]. The core step of ISTA 

is updating x: 

 

                                                                 𝑥𝑘+1 = 𝛤𝜆𝑡𝑘
 (𝑥𝑘 - 𝑡𝑘∇(𝑥𝑘; A, y))                                                                         (2) 

 
Here k is the iteration number, 𝑡𝑘 is the step size and Γ is the soft threshold operator [8]. However, we are not able to 

compute ∇(𝑥𝑘; A, y) as each data center maintains its own data - (𝐴𝑖, 𝑦𝑖). The key concept of distributed Lasso relies on 

the following decomposition: 

 

                                                           ∇𝑔 = 𝐴𝑇 (Ax-y) = ∑ 𝐴𝑖
𝑇𝑚

𝑖=1 (𝐴𝑖𝑥 − 𝑦𝑖) = ∑ ∇𝑔𝑖
𝑚
𝑖=1                                                    (3) 

 

The principle behind formula (3) is that it is possible to decompose the gradient computation of all the data into 

computing local gradients separately, which relate only to local data. For example, the 𝑖𝑡ℎ center is responsible for 

calculating ∇𝑔𝑖 = 𝐴𝑖
𝑇(𝐴𝑖𝑥 − 𝑦𝑖). Only the local gradient information - ∇𝑔𝑖 will be collected to generate ∇𝑔. The output 

for this measure is then sent back to each center to update x. This process is done iteratively until the total loss is less 

than the preset threshold. 
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2.5 Identifying the best Lasso features  

By applying (3) to the distributed dataset, some brain measures will “survive”, following Lasso regression. The features 

that are retained are therefore considered more effective for prediction as they contribute more than other features to 

predicting the disease status - y during the regression. Nevertheless, how to pick an appropriate 𝜆, and thus decide the 

sparsity of x, is still a challenging and open problem. In this paper, we adopted a practical strategy to guarantee the 

stability of the sparsity. We defined the following criterion: 

 

                                                                                ∑ 𝐿(𝑥, 𝜆𝑖)
𝑁
𝑖=1 𝑁⁄  ≥ r                                                                              (4) 

 

                                                      𝐿(𝑥, 𝜆𝑖) = {
1, 𝑖𝑓 𝑥 ≠ 0 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝐿𝑎𝑠𝑠𝑜 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝜆𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                  (5) 

 

We solved problem (1) N times with a wide range of 𝜆. For each coefficient, if its non-zero possibility is larger than a 

pre-defined threshold – r, it will be considered as a safe feature to preserve. 

3. RESULTS 

3.1 Ranking of Lasso features 

In this paper, we used three desktop computers to simulate three data centers, although the approach holds regardless of 

the location of the data, and number of centers participating. Each dataset is stored on one machine without access to the 

others. To select the most stable features, we applied the strategy described in Section 2.5 and tried 𝜆 with 1000 different 

values (0.0001-0.1). The distribution of non-zero frequency of retention in the predictive model for the 102 brain 

measures we included is presented in Figure 2. The horizontal and vertical axes represent, respectively, the index of the 

feature and the number of times that feature was non-zero during 1000 Lasso regression procedures. By setting r = 1 in 

(4), we identified 30 brain measures (left side) that were non-zero through all regression procedures. These 30 selected 

features were used for classification in Section 3.2. 

 

Figure 2. Non-zero frequency distribution of all 102 features over 1000 runs, ranking how often each was retained in 

predictive models for diagnostic classification of MDD versus controls. 

One interesting finding is that all of the selected features are thickness measures. This result is consistent with our prior 

study [2] showing a consistent and significant difference in cortical thickness, but not cortical surface area, between adult 

MDD patients and controls. In addition, the 30 chosen brain measures show considerable overlap with the “most 

significant” cortical regions reported in [2], including the isthmus of the cingulate cortex in the left hemisphere, the 

bilateral rostral anterior cingulate cortex and the bilateral insula. The brain regions corresponding to the 30 cortical 

thickness measures are displayed in Figure 3. 
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Figure 3. Cortical thickness measures in these 30 regions were retained by a distributed machine learning model for 

classifying individuals as having major depression or not. Corresponding brain areas in each hemisphere are shown with 

the same color [10]. The retention of limbic regions is in line with expectation, and consistent with the symptoms of 

depressed mood in MDD.  

3.2 MDD classification 

After feature selection with the distributed Lasso method, each data center received a list of selected features for 

classification. Here we adopted the Multilayer perceptron (MLP) classifier to categorize in individuals into the two 

groups– MDD versus control. One advantage of MLP is that it does not make any assumption regarding the underlying 

probability density functions of the input data. We performed 10-fold cross-validation using all the data at all 3 sites. 

Table 2 summarizes classification results using these 30 brain measures. To evaluate the robustness of our method, we 

also compared the classification results using all the features without the Lasso regression process. All the classification 

results are reported with the best performance using the same classifier. 

 

Table 2. Summary of classification results. 

 Feature Number General Accuracy Specificity Sensitivity 

Without Distributed 

Lasso Regression 

102 55.8% 69.1% 30.5% 

With Distributed Lasso 

Regression 

30 60.9% 76.4% 31.6% 

Improvement  5.1% 7.3% 1.1% 

 

With our distributed Lasso regression, the general classification accuracy increased from 55.8% to 60.9%. Both 

specificity and sensitivity improved when using only 29% of the original features, with the help of feature selection. This 

is the largest study for MDD classification to date, including MRI-derived brain measures from over 1,000 participants 

from three data centers. Note that we only considered T1-weighted MRI-based brain measures including cortical 

thickness, regional surface areas and subcortical volumes in this study. In the future, we hope to introduce data from 

more centers, as well as additional features from other modalities, such as DTI and fMRI, including connectivity 

measures and surface-based shape metrics. With these, we envision that the overall classification performance can be 

further improved. 

4. CONCLUSIONS 

In this paper, we applied our newly developed distributed Lasso method to MRI-derived brain data from multiple data 

centers to perform feature selection in a diagnostic classification task. We showed proof of concept of the proposed 

method. However, the results should be interpreted with caution, as we did not control for the difference in group size 
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resulting in relatively good classification of control subjects (high specificity) but not of MDD patients (low sensitivity); 

only a small proportion of datasets from ENIGMA MDD consortium were involved in this pilot study. In addition, 

almost one-third of potential features were excluded due to missingness. In the future, we will include more data from 

these ENIGMA centers, accommodate missing data and handle unequal group sizes, and the selected brain measures and 

classification accuracy may change slightly.  
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