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Introduction
Support vector machines (SVMs) are a type of classification 
method and machine learning algorithm increasingly used by 
affective scientists, and they offer an important alternative to 
traditional statistical methods typically utilized in the study of 
emotion and behavior. SVMs provide a powerful, empirically 
driven method to classify data, generate predictions, and 
explore structure in highly complex, multivariate data sets. In 
this review, we provide researchers with a framework for 
understanding the current methods and procedures of SVMs, 
review seminal studies that use SVMs in the behavioral and 
neural study of emotion and affective disorders, and suggest 
future directions and applications of SVMs in affective sci-
ence. For an introduction to SVM methods, we refer readers to 
Casella, Fienberg, and Olkin (2015), which includes practical 
tutorials and exercises in R. Other available statistical pack-
ages include the MATLAB tool fitcsvm (MathWorks, 2017, 
Release 2017b), Python tool sklearn.svm (Pedregosa et  al., 
2011), and the specialized package LIBSVM (Chih-Chung & 
Chih-Jen, 2011).

SVMs and Related Methods

General Strengths of SVMs

An SVM is an empirically driven classification technique and 
type of supervised machine learning that is used most com-
monly to assign individual cases with high-dimensional data to 
two (or more) previously established groups. Whereas tradi-
tional statistical techniques designed to examine group differ-
ences, such as t tests and analysis of variance, typically compare 
group averages on selected dependent variables, SVMs use a 
predictive algorithm to learn multivariate patterns that opti-
mally discriminate between groups. SVMs provide several 
important advantages over these statistical techniques by con-
structing a classifier to (a) analyze complex data sets composed 
of a large number of cases with many independent variables; (b) 
generate predictions about group membership for additional 
cases; (c) explore the relative and multivariate contributions of 
included features; (d) select a reduced number of features that 
most strongly influence group membership; and (e) formally 
compute the performance or generalizability of the classifica-
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tion solution in the form of predictive accuracy (Casella et al., 
2015; Hastie, Tibshirani, & Friedman, 2009).

Using SVMs for Classification

SVMs are typically used as classifiers that categorize individual 
cases into two (or more) groups and characterize observed differ-
ences between these groups. As a form of supervised machine 
learning, SVMs require data sets composed of individual cases 
(e.g., human participants) associated with measured features (e.g., 
neural activation data from many brain regions) that have been 
sorted into labeled classes (e.g., depressed vs. nondepressed). 
Broadly, an SVM analysis typically consists of three phases: (a) a 
training phase, during which a predetermined portion of the data 
(i.e., training set) is used to construct a classifier or hyperplane 
capable of discriminating between classes by fitting model param-
eters; (b) a validation phase, during which another portion of the 
data (i.e., validation set) is used for making adjustments to the 
classifier by tuning its hyperparameters; and (c) a testing phase, in 
which the classifier attempts to sort a number of new cases (i.e., 
testing set) into the specified classes, and its performance is meas-
ured by comparing its class predictions to the actual group mem-
berships. For example, when discriminating between depressed 
and nondepressed participants, researchers might begin by con-
structing an SVM that uses neural data from a randomly selected 
subset of individuals, and then use this classifier to predict, based 
on observed patterns in the neural data, whether each of the 
remaining cases belongs to the depressed or nondepressed group.

The training phase.  First, the training phase involves build-
ing a classifier by using a predictive, iterative algorithm to 
locate a hyperplane that best separates the data into two labeled 

classes. Graphically, a hyperplane can be represented as a divid-
ing line between the two classes of participants (see Figure 1). 
Because multiple hyperplanes can often separate the two 
classes, SVMs locate the observations from each class that 
occur closest to the margin, which serve as the eponymous sup-
port vectors, and find the maximum-margin hyperplane for 
which the distance between it and each support vector is as large 
as possible.

Alternatively, many SVMs implement a soft-margin (see 
Figure 2) that relaxes the requirement that the classifier per-
fectly separate marginal cases and instead allows it to misclas-
sify individual cases at a specified penalty in order to minimize 
the possibility of overfitting peculiarities in the training set and 
improve the model’s generalizability. This is accomplished by 
adding slack variables (ζn), which indicate the distance required 
to move a given observation so that it is correctly classified, and 
a regularization constant (i.e., cost function: C) that controls the 
trade-off between minimizing misclassification during training 
(higher values) versus reducing model complexity to improve 
generalizability to new data (lower values).

In addition, complex data sets are sometimes not easily sepa-
rable. In these cases, the kernel trick can be used to implicitly 
transform the training data from input space into higher dimen-
sional feature space where the optimal decision boundary can be 
located with minimal computation costs (see Figure 3). Although 
a variety of kernels have been used, most investigators typically 
select among linear, polynomial, and radial basis function 
(RBF)/Gaussian kernels, and previous research provides some 
guidelines for doing so. For example, linear kernels appear to 
offer superior computational efficiency but inferior predictive 
performance, although the predictive performance of these 
types of kernels becomes increasingly comparable when work-
ing with a larger number of features. Thus, investigators gener-

Figure 1.  Using a hyperplane to separate labeled classes.
Note. In this simplified example, the optimal hyperplane is shown on a two-dimen-
sional coordinate system as a separating line that maximizes the margin between the 
support vectors (shown as closed shapes) from two classes (shown as blue squares 
and red circles). In practice, training an SVM follows this intuition but does so across 
many predictor variables with complex interactions in multidimensional space.

Figure 2.  A soft-margin hyperplane.
Note. In this simplified example, a soft-margin hyperplane is permitted to misclas-
sify three cases, each of which corresponds to a particular error term (ξi) and results 
in a penalty in the classifier’s optimization problem through use of slack variables 
(ζi,) and a cost function, C.
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ally recommend selecting a RBF kernel when working with a 
larger number of features and a linear kernel when working with 
fewer features (Gaspar, Carbonell, & Oliveria, 2012; Keerthi & 
Lin, 2003).

Classifier training also requires a partitioning scheme to 
determine the portion of data that will be selected for training. 
The simplest scheme, the split-half method, involves randomly 
splitting the study data into two equal-sized sets: one set used 
for training the classifier and the other set used for validating 
and testing classifier performance. Other approaches, however, 
such as 80–20 and 90–10 splitting, in which the majority of the 
data are used to train the classifier, often show superior perfor-
mance and may be more suitable for certain data sets and ana-
lytic purposes (Hastie et al., 2009).

The validation phase.  Although many early SVM analy-
ses proceeded directly to the testing phase, it has now become 
common practice to include a validation phase that tunes the 
classifier’s hyperparameters. These hyperparameters are user-
specified values (e.g., regularization constant) or functions 
(e.g., kernel function) that can be manipulated systematically 
to construct multiple models and eventually select the classi-
fier with the most desirable performance (i.e., model selec-
tion), in contrast to the parameters learned by the classifier 
itself (e.g., feature weights) during the training phase (i.e., 
model fitting).

Importantly, many contemporary SVMs use a cross-valida-
tion approach to classifier building (Kohavi, 1995). This 
approach involves iteratively establishing the classifier’s initial 
parameters on a training set and then tuning its hyperparameters 
on a validation set. The most straightforward way of doing so 
involves partitioning study data into nonoverlapping sets for 

training and validation; however, this approach drastically 
reduces the data available for model building and can lead to a 
classifier that depends on an idiosyncratic selection of data for 
these partitions. Consequently, many investigators utilize some 
form of resampling in order to use the available study data as 
efficiently as possible and minimize the probability of overfit-
ting (Esbensen & Geladi, 2010). For example, in k-fold cross-
validation, the study data are divided repeatedly into k smaller 
sets, or folds; then k-1 of these folds are used for training and 
validation, and the remaining fold is used for testing. This pro-
cess is typically repeated such that every observation is used for 
training, validation, and testing in order to prevent a single, ran-
dom partitioning of the data from biasing the resulting classifier. 
Each of these iterations generates a particular model along with 
corresponding performance results that are tabulated in order to 
select a final model that has been trained on the optimal hyper-
parameters (Varma & Simon, 2006).

The testing phase.  The testing phase of classification 
involves determining the predictive performance of the final 
model, which is intended to reflect the generalizability of the 
classifier to subsequent data sets. Accordingly, some investiga-
tors recommend using an independent holdout set that has not 
been previously seen by the classifier in order to prevent infor-
mation learned during training from leaking into the final test-
ing of the classifier and to gain external out-of-sample estimates 
of the ability of the model to classify entirely new data. Other 
researchers, however, recommend reporting internal cross-vali-
dation performance, or the mean performance of the final model 
obtained during cross-validation, in order to better reflect its 
stability across many possible random partitions of the available 
data (Cawley & Talbot, 2010).

Figure 3.  The kernel trick.
Note. In this example, the training data set is composed of two classes. However, the decision boundary between these two classes is nonlinear when represented in input 
space, so these data can be transformed into a higher dimensional space through use of a kernel function, which reveals a separating hyperplane.
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In either case, the final performance of the classifier is typi-
cally expressed as some variation of the percent of cases cor-
rectly classified; it is often adjusted for the chance level of 
performance and should also reflect any necessary considera-
tions for unbalanced groups. For example, in the simplest sce-
nario, a two-class SVM with balanced groups, there is a 50% 
chance level of performance that can be subtracted from the 
observed classification accuracy to indicate performance above 
chance. Overall accuracy can also be decomposed into more 
specific types of accuracy to reflect the number of true positive, 
false positive, true negative, and false negative predictions as 
well as recall and precision scores that can be combined as 
weighted averages to generate an F1-score. Another approach to 
this problem involves using permutation testing to measure the 
likelihood of obtaining the observed accuracy by chance, which 
is popular among researchers but can be adversely affected by 
interdependency among features (Ojala & Garriga, 2010).

Many investigators use a receiver operating characteristic 
(ROC) curve that plots the classifier’s true positive (i.e., sensi-
tivity) versus false positive (i.e., 1 – specificity) rates, and then 
summarizes performance as a single metric in the form of area 
under the curve (Hastie et al., 2009). Unfortunately, many meas-
ures of predictive performance are adversely influenced by 
unbalanced groups, and although ROC curves appear least 
affected by this data skew, they can mask other forms of poor 
performance under some circumstances (Jeni, Cohn, & de la 
Torre, 2013; Rakotomamonjy, 2004). Therefore, some investi-
gators have used random subsampling (Foland-Ross et  al., 
2015) to maintain comparison groups of equal size while still 
capturing the benefits of using all available data.

The Problem of Overfitting

Although SVMs are useful in analyzing complex data sets, they 
are highly susceptible to the problem of overfitting, which 
occurs when a particular classifier appears to accurately catego-
rize individual cases during training, but it achieves much lower 
levels of performance with new data sets. This problem occurs 
when a classifier is trained on a particular data set and becomes 
overly sensitive to peculiarities in the training data such that it 
does not generalize well to other samples. Moreover, classifiers 
that employ complex decision boundaries or are trained on data 
sets with a large number of features, both of which are particular 
strengths of SVMs, are especially susceptible to overfitting—a 
problem referred to as the curse of dimensionality. Consequently, 
many of the design features and analytic tools used in SVM-
based analyses, including soft margins, cross-validation, and 
holdout sets have been developed to address this fundamental 
problem and improve generalizability to new data sets (Casella 
et al., 2015; Hastie et al., 2009).

Using SVMs for Feature Selection

In addition to their utility in classification and prediction, SVMs 
are often used as a data reduction strategy to identify the most 
discriminative features from a much larger data set, either for 
theoretical purposes or to minimize problems associated with 

overfitting (Huang & Wang, 2006). Many feature selection proce-
dures are based on applying a predetermined cutoff to a rank-
ordered list of variables sorted by their relative contributions to 
the classifier. For example, studies of resting-state fMRI may 
examine functional connectivity between every pairwise combi-
nation of voxels throughout the whole brain, resulting in hun-
dreds of thousands of neural features that would be theoretically 
uninterpretable and would likely produce serious overfitting 
problems in even the largest available data sets. By initially fitting 
a classifier to a training set composed of this full set of features, 
however, researchers can compute feature weights that reflect the 
relative ability of each feature to discriminate between classes 
and then retain either a predetermined number of features or only 
those features that reach a particular feature weight threshold. It is 
important to note, however, that each of these feature weights 
reflects the contribution of a single variable in the multivariate 
environment used during classifier training rather than the inde-
pendent contribution of each individual variable. Alternatively, 
recursive feature elimination enables researchers to include fea-
ture selection as a part of the model-building process and deter-
mine the optimal number of features to include. In particular, this 
algorithm begins by fitting a model using all available features 
and then iteratively removing the lowest ranked features and refit-
ting a model with the top predictors, based on their absolute dis-
criminative weights; this process continues until it reaches an 
empty set, at which point the highest performing model is 
selected, or until a termination condition such as number of 
desired features is reached (De Martino et al., 2008).

Comparison of SVMs and Other Methods

SVMs are most frequently used for classification problems and 
offer an alternative to other statistical techniques such as logis-
tic regression (LR) and linear discriminant analysis (LDA), 
which are used for similar purposes but involve a different set of 
statistical assumptions and mathematical operations. Although 
each of these classification methods offers a somewhat unique 
set of advantages and disadvantages, in practice, the solutions 
derived from each method frequently resemble each other.

Logistic regression.  LR is frequently used to classify indi-
vidual cases into two groups and serves a similar purpose to that 
of SVMs. Its mathematic model, the logistic function, can be 
viewed as a special case of the generalized linear model and is a 
continuous function that resembles an “S” shape (sigmoid curve). 
It is composed of a linear combination of predictor variables and 
regression coefficients and is used to estimate the probability of 
group membership; individual cases are assigned to a particular 
group according to whether their resulting probability values fall 
above or below a threshold, which by convention is typically set 
at p = .50 (see Figure 4). The model-fitting process is often based 
on maximum likelihood estimation, which involves an iterative 
process that begins with a tentative solution and continues with 
incremental revisions until it converges on an open-form expres-
sion that appears to maximize the likelihood function, or the 
agreement between the observed data and selected model (Cox, 
1958; Menard, 2002).
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LR attempts to optimally fit the training set under the 
assumption that the predictor variables are not sufficient to 
determine the response variable. It performs well with data sets 
that are characterized by a small number of noisy predictor 
variables that only provide a probabilistic estimate of the out-
come variable, but it tends to perform poorly with data sets that 
have a more determinate response variable. It is also suscepti-
ble to overfitting and poor generalizability when using a large 
number of predictor variables, and it performs poorly in high-
dimensional spaces, particularly near the margin. LR also often 
fails to select the optimal solution in cases where multiple 
separating hyperplanes are possible because solutions with low 
predictive power at the margins may still achieve maximum 
likelihood. In contrast, SVMs tend to generalize better to test-
ing sets, particularly when regularization parameters are used 
to minimize model complexity and prevent overfitting. They 
are also more appropriate with data sets that include a large 
number of predictor variables or more determinate outcome 
variables, as they use support vectors that are based on points 
near the margins and favor a hyperplane that best separates 
these data points with the widest possible margin. They can 
also better separate data sets with complex boundaries by mod-
eling nonlinear solutions with well-established RBF kernels 
(Mernard, 2002; Pochet & Suykens, 2006).

Linear discriminant analysis.  LDA can be used to address 
similar classification problems as SVM but relies on a some-
what different approach. Its mathematical model, the linear dis-
criminant function, is also a composite of predictor variables 
and estimated coefficients, but it transforms observations into a 
new dimension, which corresponds to the highest eigenvalue, in 
such a way that the distance between group means, or centroids, 
is maximized. Graphically, this discriminant function passes 

through the centroids of the two groups and is used to predict 
the probability of membership in the two classes, based on the 
entire training set (see Figure 5). It is also based on the more 
restrictive assumption that the predictor variables are normally 
distributed. Thus, LDA tends to perform well with predictor 
variables that are normally distributed and generate probabilis-
tic rather than determinative predictions about group member-
ship and when modeling class differences based on group means 
rather than observations at the boundary is preferable. However, 
LDA is sensitive to outliers in the training data, performs more 
poorly with observations at the margin, and produces biased 
estimates when assumptions of normality are violated; in con-
trast, SVMs are more flexible, as they rely on fewer assump-
tions, and they perform better when a large number of variables 
generate nearly certain predictions about class membership and 
when predicting group membership of marginal cases (Pohar, 
Blas, & Turk, 2004).

In addition to these guidelines based on theoretical proper-
ties and statistical assumptions, other empirical findings from 
planned comparisons and controlled simulations have informed 
our understanding of performance differences among different 
classification methods and the conditions under which each 
approach is most successful (see Table 1). For example, De 
Smet et al. (2006) compared SVM and LR-based classification 
to predict depth of infiltration in endometrial carcinoma 
patients based on transvaginal sonography, and found that the 
SVM classifier performed significantly better than the LR clas-
sifier in prospective predictions, as measured by area under the 
curve (AUC) at 77% and 66%, respectively, although the train-
ing set performances did not differ significantly between the 
two approaches, which suggests that overfitting problems sub-
stantially affected LR performance. Salazar, Velez, and Salazar 
(2012) analyzed performance of SVM and LR with simulated 
data from six types of statistical distributions as well as real 
microarray data in predicting disease status of several types of 

Figure 4.  Using a logistic function to separate labeled classes.
Note. In this example, a logistic function is used to separate cases into two classes 
based on the probability of membership in two classes.

Figure 5.  Using a linear discriminant function to separate labeled 
classes.
Note. In this example, a linear discriminant function is used to separate cases into 
two classes based on their values along a one-dimensional subspace that passes 
through the centroids of each class.
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cancer patients, and found that SVMs performed equal to or 
better than LR, as measured by misclassification rate, with 
most statistical distributions and mixed data sets. In contrast, 
Chen et  al. (2009) found mixed results in the comparison of 
SVM and LR in diagnosing malignant versus benign tumors 
using a database of breast ultrasound volumes. In this study, LR 
performed better than SVM, particularly at local regions of the 
ROC, when using 3D power Doppler imaging; however, SVMs 
performed better than LR and completed training and diagnosis 
at faster rates when using texture analysis.

Other investigators have examined differences in perfor-
mance between discriminant classifiers (e.g., SVMs and LR), 
which directly model the decision boundary between classes—
that is, conditional probability distribution, P (y|x)—and then 
use this model to predict class membership of each new obser-
vation, and generative classifiers (e.g., LDA), which begin by 
modeling individual class distributions—that is, joint probabil-
ity distribution, P (x,y)—and then use this model to select the 
class with the higher probability for each new observation. 
These studies suggest that discriminative classifiers tend to 
perform better than generative classifiers, presumably, in part, 
because they involve fewer assumptions, but that generative 
classifiers tend to reach their asymptotic error rate more quickly 
during training and hence perform better than discriminative 
classifiers in especially small data sets (Ng & Jordan, 2001).

SVMs and Behavioral Studies of Emotion
Over the past few decades, researchers have begun to use 
machine learning tools such as SVMs in the behavioral study 
of human emotion. These tools and the resulting algorithms 
have been used largely to distinguish among various emotions 
on the basis of facial expressions, speech/prosody, and physi-
ological data, and have been applied to help solve problems in 
affective computing to improve interaction between human 
users and machine interfaces as well as in health monitoring 
settings to improve the early detection of disease states or  
processes.

Facial Expression Analysis

Machine learning tools such as SVMs have been widely used to 
automatically identify facial expressions from standardized 
image databases as well as real-world images; these efforts fre-
quently achieve over 90% classification accuracy, with chance 
agreement ranging from 14% to 33% (Pantic & Rothkrantz, 
2000). The process of training a classifier to recognize emotional 
expressions generally involves three steps: face detection, data 
extraction, and expression classification. Investigators have 
developed increasingly sophisticated tools to improve perfor-
mance and generalizability in each of these areas. These classifi-
ers typically involve either a single binary decision or multiple 
binary decisions that can be linked in hierarchical fashion to 
select among several different types of basic emotions. For exam-
ple, An, Yang, and Bhanu (2015) developed a smile-detection 
classifier based on extreme learning machine methods, and suc-
cessfully identified naturalistic facial expressions (smile vs. no-
smile) from several large databases containing over 7,500 images 
with 93.1% classification accuracy (chance agreement ⩽ 57%). 
Their approach incorporated automatic face detection, feature 
extraction, and facial registration without any manual labeling or 
key-point detection, which is an important step toward fully auto-
matic, real-time facial expression recognition.

Other investigators have developed SVM-based algorithms 
that classify sample faces into multiple categories. For example, 
Susskind, Littlewort, Bartlett, Movellan, and Anderson (2007) 
used six independent classifiers, each of which distinguished 
between an acted neutral face and basic emotion (i.e., anger, 
disgust, fear, happiness, sadness, and surprise). Sample images 
were given a standardized rating from each of the six classifiers 
and the highest rating was selected, in winner-takes-all fashion. 
This approach resulted in a mean classification accuracy of 
79.2% (chance agreement = 17%), compared to human perfor-
mance at 89.2% accuracy, and was highest for happiness, sad-
ness, and surprise (100%) followed by anger and disgust (75%) 
and fear (25%). Song, Han, and Hong (2010) developed an 
online learning approach that adapted to new, acted facial sam-
ples following an initial training phase and used support vector 
pursuit learning in order to reduce the number of training data 

Table 1.  General guidelines for selecting among classification methods.

Support vector machine (SVM) Logistic regression (LR) Linear discriminant analysis (LDA)

Modeling technique Directly models decision boundary 
(discriminant)

Directly models decision boundary 
(discriminant)

Models class distributions 
(generative)

Separation technique Hyperplane with maximum distance 
between marginal cases of each class

Logistic function of probability of 
membership in each class

Linear function between centroids 
of each class

Linearity Linear or nonlinear (with kernel) Nonlinear logistic function and 
linear decision boundary

Linear

Appropriate predictor 
variables

Large number of determinant 
predictor variables

Small number of probabilistic 
predictor variables

Normally distributed, probabilistic 
predictor variables

Appropriate sample size Large Large Small
Computational time Fast Slow Slow

Note. Comparison of three widely used classification methods.
SVM: support vector machine; LR: logistic regression; LDA: linear discriminant analysis.
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stored and minimize computational requirements, which 
allowed their classifier to successfully operate in real time. 
Their algorithm successfully classified new faces into five emo-
tional expressions (anger, happiness, neutral, sadness, and sur-
prise) with 92.7% classification accuracy (chance agreement = 
20%), based on automatic extraction of 12 distance measure-
ments between the eyes, eyebrows, and lips.

Finally, Tan et  al. (2016) classified induced facial expres-
sions based on facial electromyography data taken from the cor-
rugator supercilii (i.e., “frowning muscle”) and zygomaticus 
major (i.e., “smiling muscle”) of adult participants as they 
viewed the presented images. This algorithm classified images 
into five distinct categories from the circumplex model of emo-
tion (Larsen & Diener, 1992): neutral valence and low arousal, 
positive valence and high arousal, positive valence and low 
arousal, negative valence and high arousal, and negative valence 
and low arousal. The classifier achieved accuracy scores of 
75.69% to 100.00% (chance agreement = 20%); it also showed 
significant differences in performance between younger and 
older, but not between female and male, participants.

Speech Emotion Recognition Systems

Researchers have also used SVM-based methods in behavioral 
studies of human emotion to examine emotional expressions in 
speech/prosody. Most of these speech emotion recognition 
(SER) systems are based on prosodic features such as pitch, 
energy, and speaking rate extracted from audio recordings of 
professional actors instructed to express particular emotions. 
They also frequently involve distinguishing among multiple 
emotions or between challenging binary pairs of emotions while 
still maintaining classification accuracies. For example, Harimi, 
AhmadyFard, Shahzadi, and Yaghmaie (2015) developed a SER 
system to analyze both prosodic and spectral features from a 
database composed of 535 samples provided by 10 professional 
actors. They noted that while most SER systems successfully 
discriminate between emotions on the basis of arousal (e.g., 
anger vs. sadness), they are far less successful in distinguishing 
between emotions on the basis of valence (e.g., anger vs. joy), 
which produces the majority of errors in many SER systems. 
Harimi et al. addressed this problem by using a linear SVM and 
nonlinear features to classify angry versus joyful voices, the 
most challenging binary comparison, with 99.1% (chance 
agreement = 40–60%) and 98.85% accuracy (chance agree-
ment = 31–69%) for female and male voices, respectively. 
Harimi et  al. also extended this approach to multiemotional 
problems consisting of seven different emotions (anger, bore-
dom, disgust, fear, joy, neutral, sadness) and achieved classifi-
cation accuracies of 94.58% (chance agreement = 5–20%). 
Other investigators have also extended binary SVMs to multie-
motional classification problems using one-versus-one and one-
versus-rest classifiers or hierarchical approaches designed to 
minimize the number of required features; these researchers 
have achieved classification accuracies up to 94.7% (chance 
agreement ⩽ 20%) for five-class problems (Hassan & Damper, 
2012; Lee, Mower, Busso, Lee, & Narayanan, 2011).

Physiological Signal Analysis

Researchers have also used SVMs to distinguish among various 
emotions on the basis of physiological data. For example, Verma 
and Tiwary (2014) used a combination of modeling, clustering, 
and classification approaches to distinguish among 13 emo-
tional states in 32 subjects from the Database for Emotion 
Analysis Using Physiological Signals, in which subjects’ physi-
ology was recorded as they rated 40 one-minute excerpts of 
music videos (Koelstra et al., 2012). Statistical analyses relied 
on a multimodal fusion approach that combined central (elec-
troencephalography [EEG]) as well as several peripheral 
(Galvanic skin response, electromyography, electroculogram, 
blood volume pressure, respiration pattern, and skin tempera-
ture) measures of physiological changes. These data were used 
first to validate an a priori three-dimensional model of emotion 
consisting of valence, arousal, and dominance dimensions, from 
which a cluster analysis then produced the following five-clus-
ter solution: (1) happiness/joy/fun/excitement; (2) love/cheer-
fulness/pleasure; (3) anger/hate; (4) sadness; and (5) melancholy/
sentimentality. Verma and Tiwary (2014) then used these data to 
train four independent classifiers that distinguished among 
emotional states and found that SVM outperformed other meth-
ods, with classification accuracies ranging from 77.96% (love; 
fun) to 80.28% (cheerful) for 13 different emotions (chance 
agreement ⩽ 13%).

SVMs and Neural Studies of Emotion
 Human neuroimaging, including structural modalities such as 
MRI and functional modalities such as fMRI and EEG, has 
become an important tool in exploring the neural structures and 
brain networks involved in emotional processing. Because neu-
roimaging scans assessments typically generate large amounts 
of multidimensional data that can be used in empirically driven 
ways to improve prediction, SVM-based methods are being 
used increasingly for both exploratory analyses and data reduc-
tion purposes, particularly in decoding studies (Naselaris, Kay, 
Nishimoto, & Gallant, 2011) that predict emotional states from 
selected neural features.

Decoding in Emotional Face Paradigms

In addition to classifying emotional face images, SVM-based 
methods and multivoxel pattern analysis have also been used to 
analyze neural data obtained while participants view emotional 
face images. Building on methods and findings from vision neu-
roscience (e.g., Kanwisher, McDermott, & Chun, 1997; Kay, 
Naselaris, Prenger, & Gallant, 2008; Nishimoto et  al., 2011), 
Zhang et  al. (2016) successfully classified facial expression 
images into four emotions (neutral, fearful, angry, and happy) 
by decoding fMRI activation signals taken from voxels distrib-
uted across face-selective regions of interest (ROIs). These 
face-selective ROIs, which were empirically defined for each 
subject by localizer scans, included the fusiform face area 
(FFA), amygdala, superior temporal sulcus, and anterior inferior 
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temporal cortex. Furthermore, Zhang et al. found that these four 
regions exhibited important functional differences: the FFA and 
anterior inferior temporal cortex successfully discriminated 
among different participants on the basis of facial identity; the 
superior temporal sulcus performed better than other regions in 
distinguishing between neutral versus emotional (i.e., fearful/
angry/happy) faces; and the amygdala performed better than 
other regions at classifying fearful versus nonfearful faces. 
Other studies have used similar methods to decode emotional 
expressions from static images (Harry, Williams, Davis, & Kim, 
2013) or dynamic videos (Said, Moore, Engell, & Haxby, 2010), 
based on fMRI activation data taken from other brain regions, 
including the FFA, frontal operculum, and early visual cortex as 
well as EEG data taken from right occipital areas (Hidalgo-
Munoz et al., 2013).

Decoding in Other Emotional Paradigms

Skerry and Saxe (2014) used SVM-based methods to success-
fully classify emotions as positive versus negative valence 
based on neural data taken from the medial prefrontal cortex as 
participants viewed facial expression images or animated vid-
eos in which a character’s emotion could only be identified 
from the situation. Although both classifiers were independently 
trained using one stimulus set (e.g., facial expressions), they 
were able to successfully classify stimuli from the other set 
(e.g., animated situations), demonstrating sensitivity to emo-
tional valence that generalizes across different stimulus types, 
including perceived versus inferred emotions as well as static 
images versus dynamic animations. Moreover, a classifier 
trained on animated situations also successfully discriminated 
between trials in which participants received rewards in the 
form of monetary gains (i.e., positive valence) versus punish-
ments in the form of monetary losses (i.e., negative valence), 
based on neural features from a particular subregion of the 
medial prefrontal cortex, suggesting that neural representations 
in some areas also generalize across attributed versus experi-
enced emotions.

Decoding in Real-Time fMRI

Other investigators working with brain–computer interfaces 
have developed online SVMs capable of decoding brain states 
in real time and providing immediate neurofeedback to partici-
pants (LaConte, 2011). For example, Sitaram et  al. (2011) 
trained an online classifier to distinguish among happiness, 
sadness, and disgust in real time using fMRI activation signals 
from the whole brain as well as from a priori ROIs in healthy 
individuals while they recalled emotionally salient events from 
their personal lives. Hollmann et al. (2011) developed an online 
classifier to decode whole-brain fMRI activation data taken 
from participants during social interaction while playing the 
ultimatum game, a commonly used paradigm in game theory in 
which a participant decides to either accept or reject a mone-
tary proposal from another player. This classifier distinguished, 
with a predictive accuracy of about 70% (chance agreement ⩽ 
56.8%), between motivational states leading players to either 

accept or reject these offers before they communicated their 
decisions.

SVMs and the Neural Studies of Affective 
Disorders
Disorders of emotion, including major depressive disorder 
(MDD) and bipolar disorder (BD), are among the most burden-
some psychiatric illnesses, both for the individual and for soci-
ety (Merikangas et al., 2007; Whiteford et al., 2013). MDD is 
characterized by profound changes in affect, including low 
mood and loss of pleasure (anhedonia) in addition to symptoms 
related to motivation, sleep, appetite, attention, and psychomo-
tor processes. Individuals with BD experience depressive epi-
sodes as well as at least one episode of mania, a state 
characterized by high levels of arousal and other behavioral 
abnormalities.

SVMs have been used to explicate relations in high-dimen-
sional data to help improve the characterization and treatment of 
these disorders. Notably, SVMs allow researchers to categorize 
individual participants into classes that are difficult to define 
explicitly, in contrast to traditional tools that are typically limited 
to drawing group-level inferences; this feature of SVMs is par-
ticularly important in efforts to develop translational neurosci-
ence tools that will help inform clinical decisions about specific 
patients. Studies of SVMs in affective disorders have focused on 
identifying patterns of brain activity that can be used to corrobo-
rate psychiatric diagnoses as well as predict treatment outcome 
and prognosis (Kipli, Kouzani, & Williams, 2013; Orrù, 
Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012).

Identification of Major Depressive Disorder

The most common application of SVMs in the study of affective 
disorders is to diagnose and identify individuals with psychiat-
ric disorders. A large and growing literature suggests that MDD 
can be identified using SVMs and neuroimaging features (for 
reviews, see Kipli et al., 2013; Orrù et al., 2012). These studies 
have used either functional (Fu et al., 2008; Hahn et al., 2011; 
Marquand, Mourao-Miranda, Brammer, Cleare, & Fu, 2008; 
Nouretdinov et al., 2011; Patel et al., 2015; Zeng et al., 2012) or 
structural (Costafreda, Chu, Ashburner, & Fu, 2009; Gong et al., 
2011; Mwangi, Ebmeier, Matthews, & Douglas Steele, 2012; 
Nouretdinov et  al., 2011; Patel et  al., 2015; Sacchet, Prasad, 
Foland-Ross, Thompson, & Gotlib, 2015) features derived from 
MRI. In a recent meta-analysis, Kambeitz et al. (2016) analyzed 
33 primary studies that collectively included 912 patients with 
MDD and 894 healthy controls, and found classification accura-
cies of 77% sensitivity and 78% specificity; they also conducted 
separate analyses for several neuroimaging modalities and 
found that each modality achieved somewhat different classifi-
cation accuracies: structural MRI (70% sensitivity, 71% speci-
ficity), diffusion tensor imaging (88% sensitivity, 92% 
specificity), task-based fMRI (75% sensitivity, 77% specific-
ity), and resting-state fMRI (85% sensitivity, 83% specificity). 
To date, Zeng et  al. (2012), who assessed resting-state fMRI 
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functional connectivity in 24 individuals with MDD and 29 
healthy controls, have reported the highest classification accu-
racy of 100% in patients and 89.7% in healthy controls; in this 
study, connectivity of the amygdala exhibited the strongest dis-
criminative power. In order to confirm the generalizability of 
these findings, however, it is critical that researchers conduct 
large-cohort, multisite studies that compare the accuracy of 
models trained on one site and tested on data from other sites.

Identification of Bipolar Disorder

Several studies have used SVMs to differentiate individuals with 
BD from healthy controls. Costafreda et al. (2011) assessed fMRI 
features derived from a verbal fluency task in 32 patients with BD 
and 40 healthy controls and achieved rates of 56% sensitivity and 
89% specificity. Schnack et al. (2014) used gray matter density 
features from 66 individuals with BD and 66 healthy controls to 
achieve 55% sensitivity and 63% specificity. Redlich et al. (2014) 
analyzed similar gray matter density features from 29 individuals 
with BD and 29 healthy controls and achieved 75.9% and 65.5% 
accuracies at two different within-sites trials.

Differentiating Major Depressive Disorder From 
Bipolar Disorder

Affective disorders are often misdiagnosed, which can lead to 
considerable negative outcomes for patients, including pro-
longed suffering from delays in providing effective treatment 
(Singh & Rajput, 2006). Machine learning is promising in 
improving the differentiation among different types of affec-
tive disorders. Several studies have used SVMs to distinguish 
MDD from BD. In the first of these studies, Redlich, et al. used 
voxel-based morphometry (VBM) to differentiate individuals 
diagnosed with MDD from those with BD across two sites. The 
features were selected based on neural models of emotion regu-
lation and included volumetric measurements from prefrontal 
cortex, amygdala, thalamus, striatum, and hippocampus. 
Classification accuracy was 75.9% and 65.5% when training 
and testing were conducted within-sites (using cross-valida-
tion), and 63.8% and 69.0% when training was conducted 
between-sites. Similarly, Sacchet, Livermore, Iglesias, Glover, 
& Gotlib (2015) used subcortical structures to differentiate 57 
individuals with MDD from 40 individuals with BD and 
achieved classification rates ranging from 56.0% to 62.9% 
(chance agreement = 41–59%). In addition, Grotegard et  al. 
(2014) used fMRI activation during presentation of several 
types of emotional faces to distinguish between 22 individuals 
with MDD and 22 individuals with BD and achieved a range of 
classification rates from 56.8% to 79.6% (chance agreement ⩽ 
52%), with the highest results for the contrast of sad versus 
happy faces. These classification accuracies, which are some-
what lower when distinguishing between individuals with 
MDD and BD compared to accuracies obtained when distin-
guishing between a single disorder and healthy controls, sug-
gest greater difficulty in distinguishing between different 
psychiatric disorders compared to a given psychiatric disorder 

and healthy controls, presumably due to similarity in many 
neural features among psychiatric disorders.

Treatment Prediction in Affective Disorders

Investigators have used SVMs to predict the outcomes of interven-
tions in affective disorders. These studies typically compare 
depressed individuals who responded to a particular treatment 
(treatment-responsive) to those who did not (treatment-resistant). 
In the first of these studies, Costafreda, Ashburner, & Fu (2009) 
were able to correctly predict clinical remission following adminis-
tration of fluoxetine with 88.9% sensitivity and 88.9% specificity 
in a cohort of 18 depressed individuals using features derived from 
VBM. The same group used fMRI features from an implicit sad-
face viewing task and was able to predict treatment response to 
cognitive behavioral therapy in 16 individuals with MDD with a 
sensitivity of 71% and specificity of 86% (Costafreda, Khanna, 
Mourao-Miranda, & Fu, 2009). Using VBM and SVMs, Gong 
et  al. (2011) reported 65–70% accuracy in differentiating 46 
depressed individuals who did and did not respond to a variety of 
antidepressant treatments (50% chance agreement) using gray and 
white matter features. Similarly, Liu et al. (2012) used VBM to dif-
ferentiate 35 individuals with MDD who were either antidepressant 
treatment-resistant or treatment-responsive and achieved 82.9% 
accuracy (chance agreement ⩽ 52%) with both white and grey 
matter features. More recently, Patel et al. (2015) used multimodal 
functional and structural imaging features to distinguish between 
33 antidepressant treatment-responsive and treatment-resistant 
individuals with late-life depression. The most accurate classifica-
tion of treatment response achieved 88.89% sensitivity and 90% 
specificity and used structural and functional connectivity features 
combined with age, gender, and education. While these initial find-
ings are promising, it will be important in future research to inves-
tigate large-scale multitreatment studies in order to identify optimal 
treatments on an individual-by-individual basis.

SVMs and the Prediction of the Onset of 
Affective Disorders

Only one study, conducted by Foland-Ross et  al. (2015), has 
used SVMs to predict the onset of affective disorder in currently 
healthy individuals. In that study, structural scans were col-
lected from 33 never-disordered adolescents, who were assessed 
regularly for the onset of depression over a period of 5 years. 
Using SVMs, baseline cortical thicknesses from regions impli-
cated in MDD and emotion regulation were used to predict the 
onset of depression with 69% sensitivity and 70% specificity. 
Feature weights indicated that right medial orbitofrontal, right 
precentral, left anterior cingulate, and bilateral insula were most 
important in constructing the SVMs. This study provides prom-
ising evidence that SVMs can be used to predict the onset of 
depression and, perhaps, that they can therefore be useful in pre-
vention programs. Future research should examine the biologi-
cal mechanisms underlying these trajectories and explicitly 
assess any clinical gains that are associated with using a 
machine-learning approach over traditional clinical procedures.
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Limitations and Future Directions
SVMs have proven to be useful analytic tools for data reduction 
and classification in the scientific study of human emotion. They 
have demonstrated relatively high levels of accuracy in discrimi-
nating among various emotions on the basis of facial expressions, 
speech/prosody, and physiological signals, as well as promising 
results in classifying individuals diagnosed with mood disorders 
and predicting responses to standardized treatments.

Although SVMs have been successful in these types of clas-
sification and prediction settings, thus far they have been limited 
in their use as fundamental discovery tools. In this regard, only a 
small number of studies have moved beyond simple classifica-
tion or prediction based on a limited selection of relevant fea-
tures. Indeed, SVMs are designed to work with all of the specified 
data to achieve optimal predictive or classification accuracy, 
often with limited attention to selecting appropriate features and 
minimal regard for whether the resulting models are sufficiently 
parsimonious or cohesive to inform the development of scien-
tific theories. For example, SVMs have shown promising results 
in classifying emotional states or clinical groups by rather indis-
criminately using a large number of neural features extracted 
from brain scans; however, these studies have not yet built a con-
vincing case about what types of neural features (e.g., functional 
activation vs. functional connectivity; insula vs. amygdala seeds) 
are most discriminative nor have they integrated findings into a 
cohesive mechanistic account of the neural basis of emotion. 
Thus, future work should integrate SVM analyses with feature 
selection techniques and traditional methods of hypothesis test-
ing to generate a more parsimonious account of the underlying 
mechanisms responsible for producing distinct classes of emo-
tions or patient groups. This is particularly pressing in clinical 
settings in which investigators strive not only to predict patient 
responses to available treatments but also to improve diagnostic 
systems, to inform our understanding of the neural mechanisms 
responsible for differences in treatment response and to generate 
novel targets for intervention. In addition, some investigators 
have now turned their attention to tool development that strives 
to adapt SVMs to address more complex structural differences 
between groups; to examine multigroup (Susskind et al., 2007), 
multimodal (Verma & Tiwary, 2014), and nonlinear (Harimi 
et  al., 2015) classification problems; to generate probabilistic 
predictions (Hollmann et al., 2011; Sacchet, Livermore, Iglesias, 
Glover, & Gotlib, 2015); and to build regression-based models 
(Qin et al., 2015). Future studies should continue to develop such 
classification and group-comparison tools, and characterize their 
relative strengths and limitations, in order to build better tools 
that enable us to explore important questions that remain open in 
affective science.
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