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Abstract

Brain development and aging are complex processes that unfold in multiple brain regions simultaneously. Recently, models
of brain age prediction have aroused great interest, as these models can potentially help to understand neurological
diseases and elucidate basic neurobiological mechanisms. We test whether quantitative magnetic resonance imaging can
contribute to such age prediction models. Using R1, the longitudinal rate of relaxation, we explore lifespan dynamics in
cortical gray matter. We compare R1 with cortical thickness, a well-established biomarker of brain development and aging.
Using 160 healthy individuals (6–81 years old), we found that R1 and cortical thickness predicted age similarly, but the
regions contributing to the prediction differed. Next, we characterized R1 development and aging dynamics. Compared with
anterior regions, in posterior regions we found an earlier R1 peak but a steeper postpeak decline. We replicate these
findings: firstly, we tested a subset (N = 10) of the original dataset for whom we had additional scans at a lower resolution;
and second, we verified the results on an independent dataset (N = 34). Finally, we compared the age prediction models on a
subset of 10 patients with multiple sclerosis. The patients are predicted older than their chronological age using R1 but not
with cortical thickness.
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Introduction
Across the lifespan, the human brain changes at both microstruc-
tural (i.e., cellular composition) and macrostructural (i.e.,
geometric organization) spatial scales (Peters 2006). Recently, the
prediction of age using such brain-related features has garnered
great interest in the neuroscience community (Kaufmann et al.
2019). In these studies, researchers try to predict age by modeling
the relationship between a biological measurement and the

subjects’ chronological age (i.e., time since birth). Here, we define
“chronological age” as distinct from “biological age,” which
irrespective of birth year, is based on the level of biological
maturation at a given time. Different biological sources may
influence age prediction differentially (Jylhävä et al. 2017). Brain-
based age prediction is motivated by the fact that different
neurological diseases can cause deviations in the predicted age.
Therefore, to understand both normal aging and diseases that
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impact the brain, a useful model of brain-based age prediction
is needed, especially one that harnesses cutting-edge imaging
techniques.

For predicting age in humans in vivo, we can use mag-
netic resonance imaging (MRI). MRI allows us to look at both
brain macrostructure and microstructure. At the macrostruc-
tural level, multiple features extracted from MRI scans have been
shown to change with age, both in development and aging. For
example, cortical thickness follows a constant decay pattern
across the lifespan (Salat et al. 2004). The overall brain volume,
on the other hand, varies in an inverted-U fashion: Brain volume
increases from childhood to adolescence, then remains constant
for about three decades, and finally decreases at later ages
(Courchesne et al. 2000).

Brain development and aging also have been linked to
changes at the microstructural level. Development processes
include increases in axonal packing, myelination, and synaptic
pruning (Paolicelli et al. 2011; Lebel and Deoni 2018), while
aging has been related to changes in synaptic structures
(decreased synaptic density and synaptic terminals), reduced
neurogenesis and synaptic plasticity, increase of astrocytes
and oligodendrocytes, and a reduction of nerve growth factor
concentration (Price and Morris 1999; Peters 2002; LaPoint et al.
2017). Changes in myelin over the lifespan are another well-
documented phenomenon (Peters et al. 1996; Peters 2002; Peters
and Sethares 2002; Marner et al. 2003; Bartzokis 2004).

Microstructural changes that occur across the lifespan can
be measured with MRI metrics. In particular, quantitative MRI
(qMRI) can provide accurate information about such biophysical
tissue properties (Basser and Pierpaoli 1996; Callaghan et al.
2014; Lorio et al. 2014; Yeatman et al. 2014; Cox et al. 2016;
Gracien, Reitz, et al. 2016b; Carey et al. 2018; Filo et al. 2019).
For example, qMRI measures have been shown to follow an
inverted-U pattern over the lifespan, similar to the aforemen-
tioned pattern in overall brain volume, in white matter and
brainstem (Yeatman et al. 2014; Arshad et al. 2016; Melie-Garcia
et al. 2018; Slater et al. 2019; Bouhrara, Cortina, et al. 2020a;
Bouhrara, Rejimon, et al. 2020b). One important qMRI measure-
ment is quantitative R1 (or 1/T1), which represents the longitu-
dinal relaxation rate. R1 is commonly used, is reliable and has
served as a proxy for tissue microstructure properties including
myelin, lipid content, and iron content (Mottershead et al. 2003;
Schmierer et al. 2004; Dick et al. 2012; Sereno et al. 2013; Lorio
et al. 2014; Lutti et al. 2014; Stüber et al. 2014; Gomez et al.
2017; Warntjes et al. 2017; Carey et al. 2018; Edwards et al. 2018;
Filo et al. 2019).

In brain age prediction, when comparing chronological age
with the predicted age as computed by prediction models,
researchers can identify mismatches between the two and
assess how they potentially relate to brain pathology. Examples
include studies on traumatic brain injury (Cole et al. 2015) mild
cognitive impairment and Alzheimer’s disease (Gaser et al. 2013),
HIV infection (Cole, Underwood, et al. 2017b), and schizophrenia
(Schnack et al. 2016).

A critical issue in such studies is the selection of a suitable
approach to achieve the highest robustness and precision when
quantifying the mismatch between chronological and biologi-
cal age (i.e., the brain-age gap). One important aspect of that
is choosing what brain measurement to use as the model’s
input. Most previous works employ either structural (e.g., corti-
cal thickness, brain volume) or connectivity measurements (e.g.,
connectome-wise connectivity or functional connectivity (FC)),
or some combination of them (Dosenbach et al. 2010; Franke

et al. 2010; Gaser et al. 2013; Franke et al. 2014; Han et al. 2014;
Koutsouleris et al. 2014; Cole et al. 2015; Luders et al. 2016;
Steffener et al. 2016; Liem et al. 2017; Cole, Ritchie, et al. 2017a;
Cole, Underwood, et al. 2017b; Bonifazi et al. 2018; Kaufmann
et al. 2019). Crucially, though, none of these studies, has tested
whether qMRI measurements can be used to predict brain aging.
Indeed, in a recent study of age prediction using nonquantitative
structural MRI, (Lewis et al. 2019) argued that qMRI may improve
the accuracy of age-prediction models.

Recently, Kaufmann et al. (2019) used structural MRI data
from more than 45 000 people for age prediction in both healthy
and diseased individuals. When predicting the age of each dis-
ease’s subgroup using the model built from the healthy individ-
uals, the researchers found that patients with multiple sclerosis
(MS) exhibited one of the largest brain-age gaps. While MS is
unfortunately a common neurological disease, its outcome is
highly variable, which makes its research more challenging.
Indeed, research has found low correlation between clinical
impairment and MS disease progression as monitored by MRI
(most commonly MRI estimates of the brain lesions’ load, mostly
in white matter) (Barkhof 1999). Previous studies have found
that qMRI is sensitive to myelination changes in MS (Laule et al.
2004; Schmierer et al. 2004; Vrenken et al. 2006; Manfredonia
et al. 2007; Vavasour et al. 2009; Mezer et al. 2013; Enzinger
et al. 2015; Gracien, Jurcoane, et al. 2016a; Gracien, Reitz, et al.
2016b; Laule and Moore 2018; Andica et al. 2019; Lommers et al.
2019). Therefore, in this article, we build a cortical-R1-driven
age-prediction model and test it on a cohort of MS patients.

In this study, we extend previous work in age prediction mod-
els and demonstrate that quantitative measures can predict age
similarly to models using cortical thickness, a well-established
biomarker for age prediction. By comparing cortical R1 and
cortical thickness as age predictors, we are able to highlight
the potential differences of macro- and micro-structural con-
tributions to age prediction. Notably, the qMRI model provides
additional information when predicting age in MS patients. We
provide a description for the differences between cortical thick-
ness and R1, both for their role in the models and for the way in
which they manifest in the cortex during underlying biological
processes of development and aging. We further study how
different cortical regions differ in terms of peak maturation and
in the rate of development and aging. Importantly, we replicate
our findings in independent datasets.

Methods
Overview

We used qMRI and cortical thickness to measure trends in the
tissue properties of 104 major cortical regions in 160 healthy
subjects between the ages of 6 and 81 years. We also analyzed an
additional dataset of 10 MS patients, who were scanned at two
different times with a 2-year gap between scans. The following
sections describe in detail the subjects, the MRI protocol, and the
data processing. Example code and data are available at github.
com/MezerLab/age-pred-r1.

Subjects
The main dataset used for this study comes from aggregating
data from three previously published works (Yeatman et al. 2014;
Sacchet and Gotlib 2017; Natu et al. 2019), all of which acquired
the data using the same scanning protocol using a 3T Dis-
covery 750 MRI system (General Electric). The three dataset all
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together make N = 209, but after quality control, we end up
with a final dataset of N = 160 (67 males) (see Imaging Quality
Control). A more detailed description of the dataset is given
in Supplementary Table 1. All participants were healthy vol-
unteers recruited from the San Francisco Bay Area based on
flyers, advertisements in local papers and school newsletters.
All participants were screened for neurological, psychiatric, and
cognitive disorders. Additionally, we included a dataset of 10 MS
patients (4 males) acquired with the same scan, protocol, and
parameters (Mezer et al. 2013) and another dataset of 10 children
(3 males) between the ages of 6–8 years, acquired in the same
scan but with a different voxel size (Travis et al. 2019).

To test the replicability of our model, we use the dataset
of (Filo et al. 2019), acquired on a 3T scanner (Siemens). This
dataset consists of 34 subjects (23 males), divided in two groups:
17 young subjects (24–31 years, 10 males) and 17 adult subjects
(57–77 years, 10 males).

Quantitative R1 Mapping Protocol
Main dataset. To create the R1 maps, where R1 = 1/T1, we used
the T1 relaxation protocol as in Mezer et al. (2016). It was
measured from spoiled gradient echo (GE) images acquired at
different flip angles (α = 4◦, 10◦, 20◦, and 30◦), with TR = 14 ms
and TE = 2.4 ms. The scan resolution was 0.93 × 0.93 × 1 mm3. In
addition, spin-echo inversion recovery (SEIR) T1 mapping was
done with an echo planar imaging (EPI) readout (SEIR-epi), a
slab inversion pulse, and spectral spatial fat suppression. For the
SEIR-epi acquisition, the TR was 3 s, the TE was set to minimum
full, and the inversion times were 50, 400, 1200, and 2400 ms. We
used 2 mm2 in-plane resolution with a slice thickness of 4 mm.
The EPI readout was performed using an acceleration factor of 2
to minimize spatial distortions.

We used the advanced normalization tools software package
(Avants et al. 2011) to register the spoiled-GE images with the
SEIR-EPI image. The transmit-coil inhomogeneity (B1 excited
inhomogeneity map (B1+)) was calculated by combining the
unbiased gold-standard SEIR fits with the spoiled-GE data (for
more details and algorithm, see Mezer et al. 2013, 2016; Appendix
A). We used the estimated B1+ and the multiflip-angle spoiled-
GE measurements to derive the maps. The maps were calcu-
lated using a nonlinear least-squares fitting procedure to mini-
mize the difference between the data and the spoiled-GE signal
equation predictions. In areas where there is good registration
between the B1+ and the spoiled GE, the voxel values are inter-
polated, while values are extrapolated in the areas where the
registration is not good enough. Whole-brain R1 maps were
generated by calculating the inverse of T1 maps (1/T1). These,
together with the bias correction maps of B1+, were computed
using the mrQ software (github.com/mezera/mrQ). We note that
areas that tend to have extrapolated B1 values (such as the tem-
poral and lower occipital lobes) also did not show an inverted-U
trend for R1 across the lifespan, in contrast with other cortical
areas. We assume this is an erroneous effect of extrapolated
values (see Development and Aging and Supplementary Fig. 1A).

For the 10 MS patients, an additional fluid-attenuated inver-
sion recovery (FLAIR) image was acquired with 0.43 × 0.43 mm2

in-plane resolution and 5 mm axial slice thickness. This image
was used to identify and remove MS lesions from the data,
although these lesions were found mostly in the white matter.
For 10 of the children, clinical limitations necessitated a faster
scan, which meant that their spoiled-GE images had a lower
resolution. For these subjects, the R1 maps were of the resolution
0.9375 × 0.9375 × 1.5 mm3.

Replication dataset. Data were collected for a previously pub-
lished study (Filo et al. 2019). For the quantitative T1 mapping,
3D spoiled-GE images were acquired with different flip angles
(α = 4◦, 10◦, 20◦, and 30◦). The TR was 19 ms, and for the TE
each image included five equally spaced echoes between 3.34
and 14.02 ms (except for six young subjects for whom the scan
included only the shortest TE) and the TR was 19 ms. The scan
resolution was 1 mm isotropic. For calibration, SEIR-epi data
were acquired, which were done with a slab-inversion pulse
and spatial-spectral fat suppression. For SEIR-epi, the TE was
49 ms, the TR was 2920 ms, and the TI were 200, 400, 1200,
and 2400 ms. We used 2 mm2 in-plane resolution with a slice
thickness of 3 mm. The EPI readout was performed using an
acceleration factor of 2. R1 maps were generated using the same
procedure explained above, voxels in which the B1+ inhomo-
geneities were extrapolated and not interpolated were removed
from the analysis.

Anatomical images were acquired with 3D magnetization-
prepared rapid gradient echo (MPRAGE) scans for 24 of 34 sub-
jects (14 of 17 younger subjects, 10 of 17 older subjects). The
scan resolution was 1 mm isotropic, the TE was 2.98 ms, and
the TR was 2300 ms. Magnetization-prepared 2 rapid acquisition
gradient Echoes (MP2RAGE) scans were acquired for the rest of
the subjects. The scan resolution was 1 mm isotropic, the TE was
2.98 ms, and the TR was 5000 ms.

Cortical Parcellation
Main dataset. The mrQ pipeline also creates a synthetic T1-
weighted image, which we use here as input to perform a
whole-brain automatic cortical parcellation with FreeSurfer
(Fischl et al. 2002). We used the Destrieux et al. (2010) atlas
to parcellate the cortex into 148 cortical gray-matter regions. In
each region, we calculate the midcortical layer using FreeSurfer.
This calculation interpolates the values between the pial surface
and inner white matter for each region to get a mean R1 value
per-region. This method allows us to minimize cerebrospinal
fluid (CSF) contamination on the measurement. Cortical
thickness of each region was also calculated with FreeSurfer.
Note that 44 of these regions were discarded from the analysis,
since they did not show substantial R1 differences with age
(probably due to B1+ inhomogeneities) (Development and Aging
and Supplementary Fig. 1A).

Replication dataset. For subjects who had an MPRAGE scan,
we used it as input for FreeSurfer. For the other subjects, the
MP2RAGE scan was used. We used a rigid-body alignment to
register these anatomical images to the R1 space prior to the
parcellation process.

Imaging Quality Control
R1 maps from all subjects in the dataset were visually inspected
for ringing and movement artifacts. Before starting the anal-
ysis, 49 subjects (47 of them younger than 25 years old) were
removed from the main dataset due to movement artifacts. The
FreeSurfer output was also visually inspected for errors, but no
subjects were removed for a problematic segmentation. After
quality control, we had a final dataset of 160 subjects.

For MS patient data, the lesions were first outlined by
the white-matter hypointensity maps, which were created by
FreeSurfer from the T1w. Next, this automatic segmentation
was manually corrected by an expert, using each patient’s FLAIR
image that had been registered to T1w space. The correction
with the FLAIR was done in order to identify lesions that were

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/31/2/1211/5934909 by guest on 25 February 2021

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa288#supplementary-data
github.com/mezera/mrQ


1214 Cerebral Cortex, 2021, Vol. 31, No. 2

not detectable with the white-matter hypointensities in T1w.
Only those areas that contained a lesion were removed from
the analysis, in order to prevent MS lesions from impacting the
prediction model. Most of the visible lesions were located in the
white matter and not in the cortex.

Development and Aging
To predict age, we started by dividing the dataset into two
subsets, young (6–25 years, N = 87, 37 males) and adults (26–81
years, N = 73, 30 males). This allows to separate the processes of
development and aging in R1 into two semilinear processes. In
each group, we fit a multiple linear regression model across all
104 cortical regions (see Age Prediction) using the MRI measure-
ment of either cortical thickness or R1. To avoid overfitting (since
we have approximately 80 subjects per group, with age as the
response variable and 104 regions as the predicting features), we
used a principal components analysis (PCA) approach (see Age
Prediction) that reduces the data’s dimensionality: We reduced
the number of features (i.e., cortical regions) from 104 to the
number of principal components (PC) which explain 95% of
the variance of the data. These PCs (∼30 for R1 and ∼40 for
cortical thickness in both young and adult groups) were the
input variables for the multiple linear regression model (we also
tested other regression models; see Age Prediction). This process
was performed separately for both young and adult groups and
for each one of the measures (cortical thickness and R1). Thus,
there were four different dimensionality reductions: young cor-
tical thickness, adult cortical thickness, young-R1 and adult-R1.
Additionally, to make sure that our result is not sensitive to
the specific method of dimensionality reduction, we replicate
the results using an ElasticNet model, similar to Richie-Halford
et al. (2019) (for a detailed description, see Age Prediction, where
we also describe locally linear embedding, a third, nonlinear
dimensionality reduction method).

We chose to separate the two age groups at 25 years old, in
order to obtain balanced groups. We tested the sensitivity of
the results to the cutoff choice by repeating all analyses with
a cutoff at 23, 30, and 45 years (based on maturation peak of
R1). To test if the model could benefit from different cutoff
strategies, we further tested a multivariate piecewise linear
regression method that made unsupervised decisions on the
cutoffs. For this analysis, we made use of the “pwlf” Python
library. This package allows for a multivariate piecewise linear
regression and includes options for selecting the number of
segments (we tested for two and three age groups) and degree
of the fits (we tested linear and quadratic fits). For extended
explanations, results, and discussion regarding the cutting age
selection, please see Supplementary Fig. 2.

To analyze the lifespan dynamics for each region, we fitted
linear trends for cortical thickness and quadratic trends for R1
over the whole population in the main dataset (i.e., the depen-
dent variable is cortical thickness or R1, and the independent
variable is age). Regions whose R1 trend did not follow the
inverted-U-shaped trend over the lifespan were discarded from
the analysis (44 of 148 regions 29.7%). As explained in quanti-
tative R1 mapping protocol, these regions are on the edge of
our B1+ inhomogeneities correction mask and therefore may be
more sensitive to residual bias. The regions, which are specified
in Supplementary Figure 1A, are located in the inferior parts
of the brain and mainly show stationary R1 values across the
lifespan (and therefore they do not add significant information
to the prediction models). Nevertheless, we ran the analysis

with all 148 regions, and found no significant difference in
the age prediction error in terms of absolute mean error (ME)
(Supplementary Fig. 3).

For the fitted linear distribution of cortical thickness, we
calculated its slope as the only value for the rate of change, since
cortical thickness follows a linear decay trend. We repeated this
analysis for each region in turn. For j = 160 subjects and a given
cortical region i, let x be a j × 1 vector of predictors (cortical
thickness or R1) and y be a j × 1 vector of responses (age). β0is
the intercept and β1is the free parameter. The fitted model for
cortical thickness in region i is as follows:

yi = β0 + β1xi

For the fitted quadratic distribution of our R1 model, we add a
quadratic term to the model since it is well-fitted by a parabola:

yi = β0 + β1xi + β2x2
i

For R1, we calculated two rates per region: one from the start
to the peak of the quadratic distribution, and one from the peak
to the end. The rate of change for maturation is given by the
slope between the fitted value at the age of 6 (minimum point of
the parabola on the left side) and the fitted value on the peak of
the parabola. Similarly, the rate of change for aging is given by
the slope between the peak value and the fitted value at the age
of 81 (minimum point of the parabola on the right side).

In the replication dataset, we only have young and adult
groups. We computed the difference of the mean values per
region between the young and adult groups in the replication
dataset, with the mean fitted value of the same regions in
the main dataset for the correspondent age range (specified
in Subjects).

Age Prediction
We modeled age using ScikitLearn (Abraham et al. 2014) to
perform multiple linear regression with cross validation (25% of
data for testing). For each subset, three different dimensionality
reduction approaches were tested:

1. Fitting after PCA:

For the linear fitting, we used as predictors the number of
components required to explain at least 95% of the variability
in the original data. We used ScikitLearn for the PCA analysis.
For the PCA, we use an m × n matrix as input (m subjects
and n independent variables, where each independent vari-
able is demeaned before calculating the PCs). We calculate the
explained variance per principal component (PC) as a fraction
from 0 to 1, and the cumulative explained variance from the first
PC to the nth PC. With this information, we select the set of the
PCs at which at least 95% of the variance in the data is explained.
For R1 modeling, this resulted in 30 components for young sub-
jects and 27 for adult subjects; for cortical thickness modeling,
the number of components was 38 and 43, respectively. These
PCs are the ones we use to fit the prediction model (see below).
For R1 modeling, this resulted in 30 components for young sub-
jects and 27 for adult subjects; for cortical thickness modeling,
the number of components was 38 and 43, respectively. The
linear model is a multiple linear regression model:

Y = βX + ε
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where Y is the n × 1 response vector where n is the number of
response variables (subjects’ age), X is an n × q with q predictors
(q PCs and n subjects). Let ε be an n × 1 vector that are inde-
pendent and identically distributed intercepts, and β be a q × 1
vector of free parameters.

We ran the age prediction model 1000 times, and each time
we used cross-validation (75% train, 25% test) to evaluate the
model. For each model-fitting iteration, we separated the train-
ing and the testing data. The PCA space is created with the
training data, and the prediction model is fitted. Then, the
testing data are projected to the space of the training data PCs.
Finally, we fit the prediction model and we evaluate the testing
data against it.

Other fitting approaches were also tested:

• Support vector regression (SVR) is an extension of support
vector machines (Cortes and Vapnik 1995) to solve regression
problems. We tested the model with the “linear” and “poly”
kernels (2◦).

• Kernel ridge regression (KRR) combines ridge regression (lin-
ear least squares with l2-norm regularization) with the ker-
nel trick (Murphy 2012). It thus learns a linear function in
the space induced by the respective kernel and the data. For
nonlinear kernels, this corresponds to a nonlinear function
in the original space. The form of the model learned by
KRR is identical to SVR, though different loss functions are
used: KRR uses a squared-error loss while SVR uses epsilon-
insensitive loss.

To quantify the contribution of each region to the prediction
model, we calculated the dot product of the explained variance
in each component by the contribution (weight) of each compo-
nent to the linear regression. In other words, we first calculated
the dot product ofXdataand XPCA. Here, Xdatais an M × N matrix
(where M is the number of region and N is the number of
subjects) and XPCAis an N × P matrix (where N is the number
of coefficients and P is the number of PCs):

Xdata ∗ XPCA = Xfeat∗PC

The new matrixXfeat∗PCis an M × P matrix that contains
information about the weight of each of the M features
(regions) in each PC. Finally, we calculated the dot product of
Xfeat∗PCwith the weights of the linear model for each component
LMPC∗weights(P × 1 vector) and got the contribution of each region
to the model Xcontribution(M × 1 vector).

Xfeat∗PC ∗ LMPC∗weights = Xcontribution

• ElasticNet:
• The ElasticNet method is a weighted average of the LASSO

and ridge penalties (Zou and Hastie 2005). The LASSO
penalty (L1) forces many parameters to have a value of zero
which leads to variable selection, while the ridge penalty
(L2) helps to ensure that highly correlated variables are
selected simultaneously and have similar model weights.
We hyperparametrized L1 and L2, so the number of weights
used for the linear fitting would match the number of PCs
used in the previous approach, with the maximum possible
accuracy.

• Fitting after locally linear embedding (LLE):

• LLE (Roweis and Saul 2000) seeks a lower dimensional
projection of the data, which preserves distances within
local neighborhoods. This approach can be conceptualized
as a series of local PCAs, which are globally compared to
find the best nonlinear embedding. We used the “Locally-
LinearEmbedding” class from ScikitLearn, and defined the
“n_components” (number of dimensions of the manifold) as
the number of PCs obtained in the PCA analysis.

Model Error Calculation
We calculated the mean absolute error (MAE) and ME to estimate
the accuracy of the model. We used the MAE to compare the
performance of the models. ME was used in the intragroup
comparison between different predicted groups (e.g., healthy vs.
MS). MAE was calculated as the absolute difference between
the predicted and chronological ages for each subject and then
averaged over the whole subgroup (young, adults or MS). ME was
calculated as the average (nonabsolute) difference between the
predicted and chronological ages. MAE gives a measure of the
magnitude of the error with respect to the real value, while ME
is informative about the directionality of this error (predicted
older or younger). We also evaluated the models with R2 (the
coefficient of determination, which measures the proportion of
the variance in the dependent variable that is predictable from
the independent variables).

Results
Age Prediction Using Cortical Thickness Versus R1

Cortical thickness is a widely used brain measurement in age
prediction. In this work, we compare it with cortical quantita-
tive R1. Our first observation is that while cortical thickness
is estimated from images whose contrast is affected by R1,
the two measurements are separable, as evident by the weak
linear relationship between them across subjects and brain
regions (Supplementary Fig. 1B [r = −0.28; P = 0]). Furthermore,
the two measurements show different dependencies on age:
Cortical thickness exhibits a moderate linear change across the
lifespan, while R1 shows a quadratic pattern. In development,
R1 and cortical thickness have a moderate negative correlation
(Supplementary Fig. 1C) and this effect is reduced in older age.
These results support the notion that cortical thickness and R1
differ in their ability to predict age, as well as in the specific
regions that drive the age prediction.

Next, we compared age prediction models in the main
dataset using either cortical thickness or R1. We found that
cortical thickness and R1 each predict age with similar accuracy
(Fig. 1A). Mean absolute prediction errors for cortical thickness
and R1 are comparable in both age groups: in the young group,
3.40 and 3.64 years for cortical thickness and R1, respectively;
and in the adult group, 10.45 and 9.62 years. Note that both for
the R1 and cortical thickness models, the error for the young
group is smaller than for the adult group, probably since the
age range of the input group is also smaller. With respect to the
proportion of the variance of age that can be predicted from
the independent variables (R2 score), in the young group the
mean values were 0.45 and 0.39 for cortical thickness and R1;
in the adult group, the values are 0.21 and 0.34, respectively
(Supplementary Fig. 4A). For additional information on the
variability of the error per subject and age gap across the
lifespan, see (Supplementary Fig. 4B,C). Finally, we tested the
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Figure 1. Age-prediction model comparison. (A) Cortical thickness and R1 predict age with similar accuracy using the PCA method. This figure shows the relationship
between the mean predicted age (cross-validation: 75% for training set, 25% for testing set, and averaging over 1000 iterations) and the chronological age of each subject.
The respective values of MAE for cortical thickness and R1 are 3.40 and 3.64 years for the young group and 10.45 and 9.62 years for the adult group. For the young group,

a t-test showed no significant difference between the MAE for cortical thickness and the MAE for R1, and the same was true for the adult group. For the ElasticNet case,
see Supplementary Figure 5A. (B) Contributions of regions to the linear model are different between young/adult groups and R1/cortical thickness. The contribution
of the different regions to the model differs both between groups and measures (but not between methods; for the ElasticNet case, see Supplementary Fig. 5B). For
the PCA method, contributions of the regions were calculated by taking the dot product of the explained variance of each feature in each component, and by the

contribution (weight) of each component to the linear regression (see Methods section Age Prediction). For visualization purposes, we show the 75th percentile for
both the positive and negative values. For the R1 adult group aging model, we found a separation between the cortical regions that contribute positively and negatively
to age prediction, which were distributed in anterior and midposterior areas, respectively.

effect of sex on the regression. In no case was the effect of sex
significant in explaining the variance of age (P > |t|: P = 0.34 for
R1 and P = 0.11 for cortical thickness).

Age Prediction Models Robustness

We replicated the analysis using different methodological
approaches and other data-handling procedures. To test the
effect of dimensionality reduction algorithms, we compared
PCA with two alternative methods, ElasticNet and LLE. We
found similar results, suggesting invariance for dimensionality
reduction method (Supplementary Fig. 5A,D).

We used two different fitting methods, such as KRR and SVR,
to test if the multiple linear regression was a suitable approach.
None of them showed significant improvement in terms of
absolute ME; see Supplementary Figure 6.

The different nature of the two measurements suggests that
combining them within a single model could have a synergy
effect and improve age prediction. To test this hypothesis, we
combined cortical thickness and R1 features together in a sin-
gle age prediction model (details in Supplementary Fig. 7). The
results improved slightly compared to using each measurement
separately: the absolute ME was 3.24 years for the young group
and 8.42 years for the adult group (compared with 3.40 and
10.45 years for cortical thickness alone and 3.64 and 9.62 years

for R1 alone, for young and old groups, respectively). In the
case of the adult group, a statistically significant improvement
was detected for the combination of R1 and cortical thickness
compared with cortical thickness alone (P = 0.03). For all other
cases, the combination of cortical thickness and R1 improved
the original individual predictions but not significantly.

The dependency of R1 with respect to age is parabolic,
and therefore we divided the data into two groups (young
and old). Indeed, when using the full dataset to predict age
(with no groups), cortical thickness performed better than R1
(Supplementary Fig. 6). We selected the cutoff between the
two age groups at 25 years to keep the groups balanced. We
also tried other approaches to divide subjects into different
age groups using a multivariate piecewise linear regression
model. This approach did not outperform our initial approach
(Supplementary Fig. 2A). We also performed the prediction
analysis with a separation cutoff of the groups at 23, 30, and
45 years, and the results were similar in terms of absolute ME
(Supplementary Fig. 2B,C). For extended explanations, results,
and discussion regarding the cutting age selection, please see
Supplementary Figure 2.

Finally, to test the sensitivity of the model to imaging resolu-
tion, we used the R1 prediction model of the young subjects on
a dataset of 10 young individuals acquired in the same scan of
the main dataset with different voxel size (see Methods section
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Subjects) against the young prediction model. Despite the dif-
ference in image resolution, these subjects’ predicted ages gave
similar mean accuracy as the subjects from the main dataset
(Supplementary Fig. 8).

Different Regions Contribute to the Cortical Thickness
and R1 Models

Because the prediction errors for cortical thickness and R1 are
similar, we might expect that these measures are indexing the
same underlying phenomena. To test whether the two methods
rely on similar cortical regions for predicting age, we plotted the
model coefficients on the cortical surface. Figure 1B highlights
the cortical regions with large contributions to the models,
according to the weights of the multivariate linear regression
model. The regions with the largest weights vary between the
cortical thickness and R1 models, and also between the young
and adult groups. Nevertheless, the identity of these regions
does not depend on the method of dimensionality reduction:
Both the PCA (Fig. 1B) and ElasticNet (Supplementary Fig. 5B)
models showed similar agreement regarding the regions
(r = 0.84), again emphasizing the invariance for dimensionality
reduction method (Supplementary Fig. 5C). Taken together
these results suggest that, despite arriving at similar measures
of accuracy, the cortical thickness and R1 models rely on
different biological sources of information to predict brain age.

Interestingly, for the R1 model for the adult group (Fig. 1B,
top right), we find an anatomical separation between the brain
regions that contribute positively and negatively to age predic-
tion. While the positively contributing regions are concentrated
in the anterior parts of the brain (frontal lobe), the regions con-
tributing negatively are midposterior (parietal lobe). For the R1
model in the young group, the primary motor cortex is the most
significant region for predicting age. For the cortical thickness
model, we do not find such clear spatial patterns.

Aging Pattern Differences between Cortical Thickness
and R1

To better understand the different contributions of each brain
region to age prediction models, we further investigated the age
pattern of both cortical thickness and R1.

In Figure 2A, we replicate the previous studies that show the
inverted-U shape for changes in R1 across the lifespan (Yeatman
et al. 2014; Slater et al. 2019). We also replicate the linear decay of
cortical thickness across the lifespan, as reported in (Courchesne
et al. 2000; Salat et al. 2004; Thambisetty et al. 2010). We find that
the patterns of cortical thickness and R1 in cortical regions show
different age dependency. Figure 2B describes R1 differences in
peak maturation. Interestingly, we find that posterior regions
reach maximum R1 values between the fourth and fifth decade,
while anterior regions peak from the sixth decade of life onward.

We compared this aging pattern with the age prediction
model in the adult group, and found a linear relation between
a brain region’s maturation peak age and its model weight
(r = 0.66), see Figure 2C.

Next, we compared the two measurements’ rates of change
in each cortical region (see Methods section Development and
Aging). We found that the spatial pattern of development and
aging rates is different for R1 and cortical thickness (Fig. 3).

We observe an inverse posterior/anterior dynamic for
development and aging in R1. For development, the R1 in
anterior cortical regions (central sulcus and frontal lobe) tends

to have higher rates of change, whereas the R1 in posterior
regions (occipital and parietal lobe) tends to have lower rates.
In aging, most regions with a higher decline rate are located
in the posterior part of the cortex (central sulcus and parietal
lobe). Strikingly, we find that aging happens more abruptly in
the regions that have the earliest maturation peak (r = 0.59; see
Supplementary Fig. 9A). This is, a region with an early peak,
starts its descent early and with a steeper slope than the ascent.
We also find that regions that have the strongest R1 changes in
aging are significant to the age prediction models in the adult
group (r = 0.44; see Supplementary Fig. 9B).

For cortical thickness, we also find a more pronounced age-
related difference in the anterior brain regions, specifically in
the frontal lobe and part of the temporal lobe. We also find a
moderate relationship (r = 0.39) between the rate of aging and
the age prediction model weights (Supplementary Fig. 9C).

Replication of Aging Dynamics on an Independent
Dataset

Next, we tested the replicability of aging dynamics using a
different dataset acquired in a different scanner (see Subjects
in Methods). In this dataset, we have only two age groups,
young (24–31 years old) and adult (57–77 years old). To compare
between datasets, we first calculated the mean expected values
per region from the fitted distribution from the main dataset for
these age ranges. For R1, we computed adult minus young in the
main dataset, and compared it with adult minus young in the
replication dataset. We performed a similar analysis for cortical
thickness, though here we used young minus adult in order to
get positive values in our result.

In Figure 4A, we plot adult–young differences for R1 for each
region in the cortex for the two datasets. We find a remarkable
agreement between both datasets (r = 0.65; Fig. 4B) with similar
aging patterns. While the aging pattern is similar, we find that
the replication dataset has a stronger aging effect, particularly in
posterior regions. For cortical thickness (Fig. 4C), we found that
the greatest thickness reductions are located in the superior and
frontal parts in both datasets, which is in agreement with earlier
studies (Thambisetty et al. 2010). We also find discrepancies in
the young–adult differences between the datasets, mostly in the
right posterior regions. Altogether, we find cortical thickness
(r = 0.31; Fig. 4D) to be less consistent than R1 between the two
datasets.

R1 is Able to Identify Tissue Alterations

One of the main motivations for performing age prediction is
that it can be used for clinical identification of brain diseases
(Cole, Ritchie, et al. 2017a). Therefore, we tested the models’ abil-
ity to identify MS patients. The MS patients’ data were inputted
to the models built only with healthy adult subjects. We found
that R1 predicted MS patients to be older than their chronologi-
cal age, while cortical thickness did not (Fig. 5A; for results with
the ElasticNet instead of PCA, see Supplementary Fig. 10A). For
the MS analysis, we removed the visible lesions found in the cor-
tex to avoid predictions driven by visible lesions; however, when
we performed the analysis without removing the lesions, the
results did not vary (Supplementary Fig. 10B). We also performed
the prediction analysis with a separation cutoff of the groups at
23 and 30 years, and again the MS patients were predicted to be
older only for the R1 case (Supplementary Fig. 2C).
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Figure 2. Aging pattern differences between cortical thickness and R1. (A) Lifespan trajectories of R1 and cortical thickness for different regions of the brain (right
hemisphere, the first entry of panel B enlarged). We find lifespan dynamics that match those described in the literature. Age-dependency differs between R1 and
cortical thickness: Cortical thickness follows a linear decay pattern while R1 follows a parabola (peak of the parabola marked with a star). The color code (colorbar
in panel B) corresponds to the peak age of each one of the cortical regions. (B) R1 shows spatial differences in peak maturation (described in the colorbar as years).

Posterior regions hit maximum maturation between the fourth and fifth decade, while anterior regions will peak later, starting during the sixth decade of life. (C) For
different cortical regions, we find a linear relationship between the peak maturation age (x-axis) and the region weight (y-axis) in the adult group’s R1 prediction model
(r = 0.68).

Multiple Sclerosis Differences with Respect to Healthy
Cohort

After noting the many differences between the two models of
age prediction (R1 and cortical thickness), we tested whether
the differences in the data can explain the difference in age
predictions of the MS patients. First, we identified the regions
that show the greatest differences between the healthy and
patient groups in the same age range: For R1, the parietal and
occipital regions show the greatest difference (Fig. 5B1), while
for cortical thickness the differing regions are located in the
midfrontal area (Fig. 5B2). Next, we asked whether there is a per-
region relationship between the weights of the age prediction
model and the difference in values between the healthy group
and the MS group. We found that such a relationship exists
for R1 (r = −0.32, P < 0.01) but not for cortical thickness (r = 0.1,

P < 0.29; Fig. 5B3,B4). This result explains why R1, but not cortical
thickness, can identify the MS group based on age prediction.

Finally, we asked whether we could select features a priori
that would show the greatest difference between healthy and
MS groups for cortical thickness, and then build an age predic-
tion model from the healthy population data that could identify
MS subjects (similar to our R1 model). While manual feature
selection may raise a “double dip” concern (Smialowski et al.
2010), we wanted to determine whether we could indeed build
such a model.

When we trained an age model with 40 regions that
show the largest differences in cortical thickness between
MS patients and healthy subjects, we found that MS patients
are indeed predicted as older than their chronological age
(Supplementary Fig. 11). We found that cortical thickness can
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Figure 3. Spatial pattern of development and aging rates is different for R1 and cortical thickness. For R1 in development, anterior cortical regions tend to have higher

rates of change, whereas posterior regions have lower rates. In aging, most regions with a strong decline rate are located in the midposterior part of the cortex. This
shows an inverse posterior/anterior dynamic for development and aging. For cortical thickness, both development and aging are equal (follows a linear decay dynamic).
We also find a pronounced difference on the anterior part with age.

Figure 4. Replication of aging dynamics on an independent dataset. We plotted the difference of the average R1/cortical thickness values for each region of the brain for
the age range limited by the replication dataset. Results are shown for the main dataset (top) and for the replication dataset (bottom). (A) For R1, we find an agreement
between both datasets. Different regions have either positive or negative values due to the fact that maturation peaks are different. This is, between the age ranges

(young: 24–31 years old; adult: 57–77 years old), some areas are developing and some others are aging. The aging effect is similar for all regions in both datasets (see
B)). We find that the replication dataset has a stronger aging effect particularly in posterior regions. (B) Each point in the scatterplot represents one of the 104 regions
analyzed. We find a remarkable agreement of R1 between both datasets (r = 0.65). (C) For cortical thickness, since the aging dynamics follows a constant decay in all the
regions, we only find positive values (accounting for the reduction from the Young group to the Adult group). We find the greatest thickness reduction to be located in

the superior and frontal parts in both datasets. We also find disagreements between the datasets, mostly in the right posterior regions. (D) Similar to B, the points in
the scatterplot represent each of the 104 regions analyzed. We find cortical thickness to be less consistent than R1 between the two datasets.

provide a model that predicts age for the healthy group
and is able to separate the MS group from the healthy
group. Importantly, this is not the model that gave the best
performance in terms of age prediction in the healthy subjects.

Discussion
The modeling of healthy brain aging has received considerable
interest in recent years. In this study, we showed that cortical
thickness (a widely used measurement for age prediction) and
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Figure 5. Predicting the MS cohort and identifying differences between the MS and healthy groups. (A) The MS group was evaluated against the trained regression

models of healthy adult subjects. While the R1 age prediction model is able to detect cortical differences for MS patients, this effect could not be seen with the
cortical thickness model. For both cases, most MS predicted points in the scatter plot are shifted to the right (i.e., MS patients are predicted as being older than their
chronological age). The effect of the prediction is clear from the ME, which accounts for the direction of the error. A t-test was performed to test the differences in
mean prediction accuracy between healthy adults and MS patients for subjects between the same age ranges. The t-test proved that the prediction has different mean

values in accuracy for the case of R1, but not for cortical thickness. An additional t-test was performed without the two outliers for the R1 MS visit #1 (orange dots
to the right) and the difference with respect to the healthy group was still significant (P < 0.047). For ElasticNet results, see Supplementary Figure 10A. (B) We identify
differences in groups by subtracting the mean value per region of the healthy subjects from those of the MS patients (healthy patients only from the same age range as
the MS patients). First, we identify the regions that show the greatest differences between the patient and control groups. For R1 (1), the regions that show the greatest

differences are the parietal and occipital regions, while for cortical thickness (2), the differences are more dispersed, including larger differences in midfrontal regions.
For R1 (3) we do see a relationship between the disease-related changes and the weights of the age prediction linear model (LM). Yet, for cortical thickness (4), there is
no evidence for a strong relationship between differences in healthy and MS values and the model weights.

quantitative R1 (a quantitative measure of the tissue’s under-
lying microstructure) have similar accuracy for the prediction
of age in healthy patients. Our results reveal that cortical R1
is suitable for age prediction. Importantly, while age predic-
tion accuracy seems comparable for R1 and cortical thickness,
we found that the model for each measure relies on different

anatomical features both macroscopic and microscopic. To bet-
ter understand the difference in the structural features between
the models, we described lifespan dynamics of cortical thickness
and R1 across the cortex. Finally, we showed how the aging
process is altered for individuals with MS. For these patients, R1
and cortical thickness provide different age predictions.
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Age Prediction Using R1 Versus Cortical Thickness

Several recent studies have addressed age prediction using dif-
ferent MRI modalities, including T1-weighted (T1w) imaging,
diffusion weighted imaging, and functional MRI (Dosenbach
et al. 2010; Gaser et al. 2013; Liem et al. 2017; Cole, Underwood,
et al. 2017b; Bonifazi et al. 2018; Richie-Halford et al. 2019). The
use of functional and structural modalities has been widely
studied, but there is a critical lack of studies that predict brain
age with quantitative estimates of brain structure. Therefore, in
this study, we utilize qMRI measures, for which the intensity
measures are individually meaningful (Lebel et al. 2012; Lorio
et al. 2014; Edwards et al. 2018; Filo et al. 2019). Since R1 is
considered an in vivo histological tool (Edwards et al.), R1 age
prediction is an important model that links the process of aging
to cortical microstructure.

We compared the accuracy of predicting aging in the cortex
for R1 with cortical thickness, a robust, widely used, and
frequently studied structural measurement of the brain. We
showed that both measurements had similar performances
when predicting age in terms of MAE, although the ability of
the independent variables to explain the variance of age (R2)
was significantly different. The error rates in this work are
moderately greater than the range of error rates of prediction
models that use structural data (Cole, Ritchie, et al. 2017a; Cole,
Underwood, et al. 2017b; Dafflon et al. 2020; Franke et al. 2010).
Other approaches in the literature build on the combination of
morphological and resting-state fMRI correlation (also called
FC) features (Liem et al. 2017); FC features alone (Dosenbach
et al. 2010); tractography-based connectivity (also called
structural connectivity (SC)) features (Han et al. 2014); or
a combination of FC and SC features (Bonifazi et al. 2018).
However, the objective of our study is not only to maximize
the model’s performance, but also to identify the potential
benefits of using exclusively quantitative microstructural
features as compared with macrostructural or morphological
features. The relation between quantitative measures in the
cortex and the aging process, converges with previous studies
that use other qMRI measures to show similar relationships
between age and white matter structure, including magneti-
zation transfer and R2* (Lebel et al. 2012; Yeatman et al. 2014;
Arshad et al. 2016; Melie-Garcia et al. 2018; Slater et al. 2019).
Quantitative measures also have been used to analyze age-
related changes with network analysis approaches (Melie-Garcia
et al. 2018; Grydeland et al. 2019; Kupeli et al. 2020), but our study
marks the first time they have been used in the age prediction
paradigm.

We found that the R1 and cortical thickness models
emphasize different sets of brain regions as contributing most
to the age prediction (Fig. 1B). This suggests that features
contributing to aging in our R1 and cortical thickness models
reflect different biological sources. Changes in trends across
the lifespan (Supplementary Fig. 1C) between the different
measurements emphasize the difference in the underlying
biological sources. It is reasonable to believe that cortical
thickness and R1 are weighted by different macrostructural and
microstructural aspects, respectively, of cortical organization.
Brain regions that contribute to age prediction in cortical
thickness have been enumerated previously in the literature,
for example in (Khundrakpam et al. 2015). For R1, while
myelin is likely to contribute to the age-related R1 differences
(Mottershead et al. 2003; Schmierer et al. 2004; Lutti et al. 2014;
Stüber et al. 2014; Warntjes et al. 2017), other biological sources

also may contribute, including iron, lipids, water fraction, cell
and dendritic arborization, and molecular makeup (Gomez
et al. 2017; Filo et al. 2019; Natu et al. 2019). Furthermore,
these biological sources likely vary in their contribution
between development and aging. In the literature, we can
find inconsistent results between age-related volume loss
derived from imaging techniques and postmortem analyses
(Piguet et al. 2009). For example, age-related differences in
myelination could differentially affect the GM/WM boundaries,
which could affect the apparent cortical thickness as measured
by MRI (Westlye et al. 2010; Lorio et al. 2016; Gomez et al. 2017;
Natu et al. 2019).

Aging Pattern Differences Between Cortical Thickness
and R1

In this study, we found a significant correlation between aging
patterns and the weights of the prediction model (Fig. 2C and
Supplementary Fig. 9A). However, this relation is stronger for
R1 than for cortical thickness (Supplementary Fig. 9B,C). In
comparing the age dependency of R1 and cortical thickness
across the lifespan, we found different age dynamics. The
linear decay of cortical thickness across the lifespan has been
widely reproduced in the literature (Courchesne et al. 2000;
Storsve et al. 2014). We reproduced previous findings of frontal
regions having higher rates of thickness loss than other regions
(Salat et al. 2004).

For R1, we observe different dynamics for different parts
of the brain (Fig. 2A,B) in comparison with cortical thickness,
posterior regions peak at a younger age and the decline rate
is relatively higher, while the opposite pattern is apparent for
frontal and temporal regions (Fig. 3). The pattern of posterior-
to-anterior brain myelination process in brain development has
been reported in (McArdle et al. 1987; Timmler and Simons
2019). These dynamics agree with previous findings that claim
that the brain’s lightly and later myelinated regions are the
prefrontal, inferior parietal, and lateral temporal cortex. These
cortical areas are the main regions involved in higher brain
functions (Collins et al. 2010; Glasser and Essen 2011; Donahue
et al. 2018).

Grydeland et al. (2019) argues that well-connected regions
such as association cortex, which are highly specialized for
multimodal integration and underpin most complex behaviors,
need to remain plastic, and consolidate their connections by
an extended myelination stage. Our findings support this argu-
ment, which is known as the “last in, last out” theory of devel-
opment, which suggests that regions that develop and peak in
later years will also be the ones to decline last. This is in contrast
to the “last in, first out” hypothesis (Raz 2000).

R1 is also sensitive to iron, which progressively accumulates
with age, particularly in the first three decades, with a heteroge-
neous distribution in different regions of the adult brain (Drayer
et al. 1986). Zhou et al. (2001) reported a higher concentration of
iron in the occipital cortex compared with the prefrontal cortex,
which could be mediated by the effect of early maturation
observed in these regions. Lorio et al. (2014) found correlations
between gray-matter volume differences and R2∗ maps in the
prefrontal cortex in aging, which could be interpreted as an
effect of iron content on the R1. Furthermore, R1 changes are
mediated by both molecular composition and water content
(Mezer et al. 2013). Recently, Filo et al. (2019) revealed that aging-
related R1 changes in the cortex originate from changes in water
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content and lipid composition. We also found that the regions
around the central sulcus show the highest rates in development
and aging (Fig. 3). This finding supports the “gain-predicts-loss”
hypothesis that assumes a symmetric rate of development and
aging (Yeatman et al. 2014; Grydeland et al. 2019). The regions
around the central sulcus peaking around the age of 45 years
(approximately the median age of the subject pool) may con-
tribute to an accurate estimation of the rates, since they cover
development and aging with a similar number of years, showing
the whole dynamic.

R1 is Able to Identify MS Patients

Recently, Kaufmann et al. (2019) found MS to be one of the
diseases where age prediction (using T1w images) was off by
a significant margin. Therefore, we tested our age prediction
model against a group of MS patients. Even when we use
only normal-appearing tissue in our model, we report that
MS patients are predicted older than their chronological age
(Fig. 5A). This effect was evident from the quantitative R1 model,
but harder to detect with cortical thickness. Our finding would
seem to be in contrast to (Kaufmann et al. 2019), who found
a clear age gap in MS using T1w. However, here we used only
cortical thickness and not cortical area and volume as well as
gray and white-matter features (we also excluded the lesions
where the prior studies did not). Importantly, our patient sample
is small (N = 10), so our model needs to be further tested
with a larger patient dataset. The R1 sensitivity we report in
MS patients is in agreement with claims that damage in the
cortex (not only in white matter) plays a significant role in MS
(Lucchinetti et al. 2011; Absinta et al. 2016).

MS Differences with Respect to a Healthy Cohort

For the MS patient group, we identified an age prediction gap
in R1 but not in cortical thickness (Fig. 5A). In the cortex, we
found that R1 is able to capture microstructural changes asso-
ciated with MS, as evident by its effect on age prediction in
the patient cohort. To prevent the common lesions in MS from
driving the observed effect, we excluded all visible lesions in the
patients’ T1w and FLAIR images. Nevertheless, it is well known
that cortical and juxtacortical lesions are common and almost
invisible in MRI (Futatsuya et al. 2016), unless using specialized
sequences such as double inversion recovery (DIR) (Geurts et al.
2005). Therefore, even if we excluded all visible lesions, it is
possible that invisible cortical lesions were still present. This
strengthens our claim that deviations between the biological
and chronological age within the presented framework provide
important insight into disease effects in the cortex, which oth-
erwise would be hard to uncover using MRI. Future studies using
specialized sequences, such as DIR, could shed light on whether
or not cortical lesions are indeed driving the observed effect.

To better understand this difference, we directly compared
the MS patients with the healthy population. We found that
while MS patients’ brain regions showed deficits (compared with
the healthy population) in both R1 and cortical thickness, the
regions that had high contributions to the model showed deficits
only in R1 (Fig. 5B).

Although our age prediction model for cortical thickness was
unable to identify the MS group, differences in cortical thickness
for MS patients have been reported previously in the literature
(Benedict et al. 2006; Calabrese et al. 2010). Our results (Fig. 5B1)
also show differences between the healthy and the MS groups.
We used supervised feature selection to build a model to predict

MS patient age, and found that this model predicted MS patients
to be older than both their chronological age and their healthy
counterparts’ predicted age (Supplementary Fig. 11). However,
these regions do not correspond with the ones that contribute
to the more accurate age prediction model. This result high-
lights the fact that optimal age prediction may be suboptimal
in detecting diseases.

Limitations of the Study

In this study, we compared age-prediction models of two MRI-
based measurements: cortical thickness and R1. We acknowl-
edge that using a linear model to fit part of the lifespan might be
limiting our ability to compare the measurements, as each met-
ric follows a different dynamic for the whole lifespan. Another
limitation is that we selected a threshold (i.e., 25 years) to split
the dataset into two groups, which was based on the criteria of
having the groups balanced and describing specific dynamics
(development for the young group; plateau and aging for adults).
We found that our results are robust with respect to the choice
of age threshold: using other thresholds, we did not find dif-
ferences neither in the general prediction accuracy nor in the
MS patients being predicted as older (Supplementary Fig. 2C). A
more balanced distribution of the dataset would have helped to
overcome this limitation and could have allowed us to devise a
more accurate prediction.

Quantification of magnetic resonance imaging parameters
in cortical brain regions can be challenging due to CSF con-
tamination (misidentifying CSF voxels as correct values). We
minimized the potential CSF effect by interpolating the val-
ues between the pial surface and the inner white matter. This
was done by calculating the midcortical layer in FreeSurfer. To
support the use of the midlayer analysis, we tested the model
on data with a lower resolution (which is more prone to CSF
contamination), and found no change in the prediction quality
(Supplementary Fig. 8). Nevertheless, there might still be resid-
ual contamination of CSF in our analysis. A better resolution
acquisition would be beneficial to solve this issue.

Our results might be sensitive to our methodological choices,
which include simple and reliable methods (PCA, multiple linear
regression, linear and quadratic fittings) and widely used mea-
surements (cortical thickness and cortical R1). To account for
the effect of the methodological choices, we also tested several
different methodological approaches (different dimensionality
reduction methods and fitting models) among other data han-
dling procedures (using all features, combining different mea-
surements, piecewise regressions). Overall, we obtained similar
results, which suggest a robust effect.

The number of subjects used in this study (N = 160) and
its distribution limits our ability to fit the prediction models
in a manner that is fully robust and resistant to noise. Nev-
ertheless, we report a consistent matching between two inde-
pendent datasets, especially for R1 as well as between data in
different resolutions. This result highlights the added value of
using quantitative measures in terms of reliability (Weiskopf
et al. 2013; Lévy et al. 2018; Lee et al. 2019; Gracien et al. 2020).
The cohort of MS patients is limited in the number of sub-
jects. MS interindividual variability is large, and therefore focus-
ing on the mean difference with respect to healthy subjects
might overlook important aspects of the disease. Due to the
well-known heterogeneity of this neurological condition, anal-
ysis on a larger sample would be helpful in drawing broader
conclusions.
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Summary
In conclusion, in this study, we describe a novel view on the
age prediction paradigm by using quantitative R1 in the cortex,
and provide evidence for similar accuracy compared with the
commonly used measure of cortical thickness. We explore the
nature of these models and the dynamics driving the aging
process. For R1, the prediction model and its component weights
are able to capture dynamics directly related to aging. The fact
that MS patients are predicted older than their chronological
age suggests that substantial changes are occurring in regions
significant for the prediction model. The model for cortical
thickness seems to be driven by other biological processes, and
relies on different cortical regions than does the R1 model.
Therefore, we also use the age predictors to highlight the impor-
tance that the model weights have in disease assessment. We
propose that the use of quantitative measures in age prediction
models can provide additional utility for the characterization
of neurological diseases, and adds novel information to classic
measures such as cortical thickness. Future studies may explore
the effects of including white-matter and subcortical features to
the age prediction models, and of combining quantitative and
classic measures within the same model.
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