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Abstract

The problem of poor reproducibility of scientific findings has received much attention

over recent years, in a variety of fields including psychology and neuroscience. The

problem has been partly attributed to publication bias and unwanted practices such

as p-hacking. Low statistical power in individual studies is also understood to be an

important factor. In a recent multisite collaborative study, we mapped brain anatomical

left–right asymmetries for regional measures of surface area and cortical thickness, in

99 MRI datasets from around the world, for a total of over 17,000 participants. In the

present study, we revisited these hemispheric effects from the perspective of repro-

ducibility. Within each dataset, we considered that an effect had been reproduced

when it matched the meta-analytic effect from the 98 other datasets, in terms of effect

direction and significance threshold. In this sense, the results within each dataset were

viewed as coming from separate studies in an “ideal publishing environment,” that is,

free from selective reporting and p hacking. We found an average reproducibility rate

of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was

higher for larger effects and in larger datasets. Reproducibility was not obviously

related to the age of participants, scanner field strength, FreeSurfer software version,

cortical regional measurement reliability, or regional size. These findings constitute an

empirical illustration of reproducibility in the absence of publication bias or p hacking,

when assessing realistic biological effects in heterogeneous neuroscience data, and

given typically-used sample sizes.
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1 | INTRODUCTION

The issue of reproducibility has received considerable attention in a

variety of fields including medicine (Prinz, Schlange, & Asadullah,

2011), psychology (Aarts et al., 2015; R. A. Klein et al., 2014) and

neuroscience (Button et al., 2013; Wager, Lindquist, Nichols, Kober, &

Van Snellenberg, 2009). Poor reproducibility has been partly attrib-

uted to reporting bias and problematic practices such as selective

reporting of outcomes (i.e., p-hacking) (Aarts et al., 2015; Baker, 2016;

Bakker, van Dijk, & Wicherts, 2012; Ioannidis, 2005, 2008; Ioannidis,

Munafo, Fusar-Poli, Nosek, & David, 2014; John, Loewenstein, &

Prelec, 2012; Simmons, Nelson, & Simonsohn, 2011). This situation

has resulted in multiple calls for more reproducible research
A complete list of the ENIGMA Laterality Working Group can be found in the Supporting
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(e.g., Benjamin et al., 2018; Button et al., 2013; O. Klein, Hardwicke,

et al., 2018; Poldrack et al., 2017; Valentin Amrhein, 2017). For

example, the Open Science Framework has been set up as a free and

open source project management resource for researchers across the

entire study cycle. In addition, the Transparency and Openness

Promotion (TOP) Guidelines (Nosek et al., 2015) have been proposed

to improve the quality and credibility of scientific literature. In neuro-

imaging studies, problems such as flexibility in data analysis have been

widely discussed, and best practices have been proposed to ensure

that neuroimaging studies can produce meaningful and reliable results

(Poldrack et al., 2017). The reproducibility rate was not found to cor-

relate with levels of experience and expertise of study authors, in a

replication study of previous findings in psychology (Aarts

et al., 2015), which suggests that some practices will not improve

merely through training, and that other factors influence reproducibil-

ity within the current research convention.

Among these factors, low statistical power is now well under-

stood to contribute to the reproducibility problem (Button

et al., 2013; Ioannidis, 2005), although it was only ranked number

three behind “Selective reporting” and “Pressure to publish” in a recent

Nature survey (Baker, 2016). The positive predictive value (PPV), that

is, the probability that a “positive” research finding reflects a true

effect, has been formulated as a function of the prior probability of

the effect being real (R, the prestudy odds), the statistical power of

the study (1 − β; β is the Type II error), and the level of statistical sig-

nificance required (α; α is the Type I error, for example, 0.05 or 0.01):

PPV = (1 − β)R/([1 − β]R + α)) (Button et al., 2013; Ioannidis, 2005).

For example, it is evident that a research finding is more likely true

than false (i.e., PPV > 50%) if (1 − β)R > α. However, in many cases

the true effect size is unknown a priori, and/or the prestudy odds are

unknown. This problem is then further complicated by potentially

selective reporting or other problematic practices.

The present study aimed to illustrate the reproducibility of human

MRI results in an unusual setting where a priori knowledge of the sta-

tistical power and prestudy odds was not necessary, and in the

absence of selective reporting. This was possible because we lever-

aged summary statistics from a previous study performed via a world-

wide collaborative network known as the Enhancing NeuroImaging

Genetics through Meta-Analysis (ENIGMA) consortium (Thompson

et al., 2014). In that study, the ENIGMA consortium mapped left–right

hemispheric asymmetry effects on 70 regional and total cortical gray

matter metrics, in over 17,000 individuals from 99 datasets (Kong

et al., 2018). Hemispheric asymmetry is a key feature of human brain

organization, and altered brain asymmetry has been linked to various

cognitive and neuropsychiatric disorders (Carrion-Castillo et al., 2020;

Kong, Boedhoe, et al., 2020, Kong, Postema, et al., 2019; Kong

et al., 2020; Postema et al., 2019; Toga & Thompson, 2003; Zhen

et al., 2017). For the study by Kong et al. (2018), analysis plans and

scripts were prepared by a central site and then sent out to many sep-

arate sites worldwide to run on their own datasets. Finally, outputs

from each dataset were sent back to the central site and combined by

meta-analysis methodology, with no results-based selection applied to

any of the datasets. Thus, we can consider summary statistics from

the 99 datasets as being from an “ideal reporting environment”, free

from reporting bias, or other potentially problematic practices such as

p-hacking.

If we assume the meta-analytic effect sizes reported by Kong

et al. (2018) to represent the “true” hemispheric asymmetry effect

sizes, in this way we have access to a real-world setting for examining

reproducibility across 99 datasets in the absence of selective

reporting, which can provide a useful illustration of how consistently

realistic biological effects in MRI data can be detected when surveying

cohorts worldwide. If we wanted to address this question with actual

papers in the literature, then an ideal publishing environment would

first need to be established, free from selective reporting. This seems

impossible in the current era, because many journals and scientists are

incentivized to report statistically significant results, while leaving

nonsignificant findings unpublished (known as the file-drawer effect).

Specifically, Kong et al. (2018) analyzed thickness and area mea-

sures for each of 34 brain regions based on the Desikan-Killiany atlas

from FreeSurfer, as well as entire hemisphere-level average thickness

and total area (Fischl, 2012), for a total of 70 left–right hemispheric

effects. For the present study of reproducibility, we considered each

of these 70 asymmetry effects as a single research question, for

example, does the parahippocampal gyrus show left–right asymmetri-

cal thickness, on average, in the human brain? We further considered

that each of these questions had been asked 99 times in separate

datasets, with a range of different sample sizes, scanning equipment

and parameters (although image processing with Freesurfer was har-

monized across datasets). Our goal was to use these data to assess

reproducibility of hemispheric asymmetry effects not only in an “ideal

publishing environment”, but also in the context of extensive dataset

heterogeneity, which is a feature of the real-world literature.

2 | MATERIALS AND METHODS

2.1 | Datasets

We used publicly available summary statistics from the previously

published ENIGMA cortical asymmetry project (http://conxz.net/

neurohemi/) (Kong et al., 2018). That study used data from 17,141

healthy participants from 99 separate datasets, each of which showed

different age distributions, and were from diverse ethnic backgrounds

(Table S1). Participants were drawn from the general population or

were healthy controls from clinical case–control studies (affected indi-

viduals were not included). In most cases each participating site contrib-

uted one dataset, but there were seven sites that contributed more

than one dataset from distinct studies (Table S1), for example when dif-

ferent scanners were used (1.5T and 3T: e.g., OCD_Cheng_1.5T and

OCD_Cheng_3T; OCD_VUmc 1.5T and OCD_VUmc 3T), or different

age groups were recruited (such as children and older adults:

e.g., NSIOCDS_3T_Adults and NSIOCDS_3T_Child; GBB_ GRADUAL

and GBB_OLDERS).

In the present study we analyzed the reproducibility of hemi-

spheric asymmetry effects on paired left–right measures of cortical
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thickness and surface area, for 34 brain regions based on the Desikan-

Killiany atlas from FreeSurfer (Fischl, 2012), as well as entire

hemisphere-level average thickness and total surface area. See Kong

et al. (2018) for details about the neuroimaging processing and quality

control. Briefly, images were acquired using scanners of different field

strengths (1.5T and 3T; Table S1) and all images were analyzed using

the automated and validated pipeline “recon-all” implemented in

FreeSurfer (Fischl, 2012), although different software versions were

possible (version 5.0, 5.1, and 5.3) (Table S1).

Table S1 gives summary information for each dataset: Briefly, the

sample size varied across datasets from 14 to 2,326 (median 72);

FreeSurfer version 5.3 was used exclusively in 91 datasets, version 5.1

exclusively in 6 datasets, version 5.0 in one dataset, and a mixture of

5.1 and 5.3 in one dataset; 63 datasets used a 3T scanner and

29 datasets used a 1.5T scanner; the minimum age across all datasets

was 3 years, the maximum age was 90 years. All local institutional

review boards permitted the use of extracted measures from the

anonymized data.

For each dataset and paired left–right measure, Kong et al. (2018)

used paired t-tests to assess inter-hemispheric differences, and

Cohen's d was calculated based on each paired t-test, to estimate

the hemispheric effect size (i.e., the standardized difference between

the mean left and right measures, for a given region and dataset). In

the procedure, analysis plans and scripts were prepared by a central

site and sent out to each dataset's own site for running the analysis,

and finally all outputs for every dataset were sent back to the central

site for meta-analysis. (A laterality index was also used when investi-

gating how factors such as age, sex, and handedness affected brain

asymmetry [Kong et al., 2018], but this is not relevant to the present

study.)

In addition to the per-dataset summary statistics and meta-

analysis results from Kong et al. (2018), two additional datasets with

MRI data were used for the present study. These were the Human

Connectome Project (HCP; https://www.humanconnectome.org/)

and Brain Imaging Genetics (BIG; http://cognomics.nl/) datasets. The

HCP comprises 1,113 individuals (age 22–37) scanned using the

HCP's custom 3T Siemens Skyra, with data processing as previously

described (Glasser et al., 2013). For each of the 34 regions in the

Desikan-Killiany atlas, cortical thickness and surface area were

derived based on individual T1-weighted MRI images (HCP pipeline

based on FreeSurfer version 5.3). The HCP data were only used to

define a population mean surface area for each cortical region, which

was used to test whether regional size is related to reproducibility of

asymmetry effects (see below).

In the BIG dataset, we included T1-weighted MRI scans of

423 participants (age 18–74) who were scanned twice on separate

occasions. Their second scan was done from zero to 2,650 days after

their first scan (median = 149; mean = 325, SD = 432). From these

data we could calculate the reliability of regional measures, and then

test for a relation of reliability to reproducibility (see below). BIG data

were scanned using either a 1.5T Siemens Avanto or Sonata scanner,

or a 3.0T Siemens TIM Trio or Skyra scanner (see Table S2 for the

numbers of participants by scanner). FreeSurfer version 5.3 was used

for deriving cortical thickness and surface area for each of the

34 regions in the Desikan-Killiany atlas.

2.2 | Estimation of the “true” effects

Given a lack of consistency of brain asymmetry findings in earlier liter-

ature, Kong et al. (2018) performed the largest ever study of this

issue, based on at least an order of magnitude more participants than

any previous study. For each regional or total thickness or surface

area measure, a paired t-test (i.e., paired within subject) was used to

compare the mean left and right measure, separately within each

dataset. These t-tests provided the hemispheric effects, and the out-

puts from each of the 99 datasets were combined using inverse

variance-weighted random-effect meta-analysis, with the R package

metafor, version 1.9-9. This method tests one overall effect, while

weighting each dataset's contribution by the inverse of its

corresponding sampling variance. Thus, unlike fixed-effect meta-anal-

ysis, this method takes into account variability across difference stud-

ies. In addition, test statistics in the meta-analyses were computed

based on a standard normal distribution (test = “z” by default). For

more details, see (Kong et al., 2018).

A Cohen's d effect size estimate of the population-level asymme-

try was obtained for each hemispheric effect, for each paired left–

right measure, that is, the standardized difference between the mean

left and right measures. The Cohen's d hemispheric effects derived

from the meta-analytic approach over 99 datasets can be taken as

“true” effects representing left–right differences in the average human

brain, as measured through this image processing and analysis pipe-

line. Sixty-three of the 70 hemispheric effects were significant at

p ≤ .05 (uncorrected for multiple testing across regions) in the meta-

analysis over 99 datasets, while seven of the effects were not signifi-

cantly different from zero (p > .05) (Kong et al., 2018). We also applied

a more stringent significance threshold of 0.05/70 to identify “true”

effects surviving multiple testing correction, which resulted in 56 sig-

nificant effects and 14 nonsignificant effects.

Note that a meta-analytic approach was taken by Kong

et al. (2018) because the central analysis team did not have individual-

level data from most of the 99 datasets. The different sites ran the

same script on their data and returned summary statistics to the cen-

tral team for meta-analysis. Individual-level data sharing can require

material transfer agreements and additional IRB approvals, so that a

meta-analytic approach was the only way to achieve a timely study of

this many datasets. Nonetheless, meta-analysis and individual-level-

analysis were found to result in similar effect sizes in a recent, empiri-

cal comparison using large-scale multisite neuroimaging data

(Boedhoe et al., 2018).

2.3 | Estimation of reproducibility

For the present study, the reproducibility rate for a given effect was

calculated as the proportion of datasets in which that effect was
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reproduced. Specifically, we applied a leave-one-out strategy for esti-

mation of reproducibility: each effect within each dataset was com-

pared in turn to the corresponding meta-analytic effect from the

98 other datasets, to avoid sample overlap.

For an effect that was significant at p ≤ .05 in a given meta-

analysis of 98 datasets (or more stringently at p ≤ .05/70 to correct

for multiple comparisons across 70 effects), the effect in the

remaining single dataset would need to be in the same left–right

direction as in the meta-analysis, and also be nominally significant

within the single dataset (p ≤ .05), in order to be counted as

reproduced in that dataset.

For an effect that was nonsignificant in the meta-analysis

(p > .05, or p > .05/70 to correct for multiple comparisons across

70 effects), then the effect would also need to be nonsignificant

(p > .05) in the single dataset, in order to be counted as reproduced in

that dataset. Thus reproducibility in our formulation is not simply a

measure of the detection rate of significant effects (i.e., statistical

power), but also incorporates the consistency of finding nonsignificant

effects in the individual datasets, when those effects were not signifi-

cant in meta-analysis.

2.4 | Reproducibility, effect size, and sample size

The hemispheric effect size varied across different brain structural

measures (Kong et al., 2018), from Cohen's d = 0.0015–1.76 (median

0.30) (unsigned magnitudes) (Figure 1). In addition, the sample size

varied across datasets, from 14 to 2,326 (median 72) (Figure 1a;

Table S1). These variabilities allowed us to illustrate the expected rela-

tionships of reproducibility, effect size and sample size. As surface

area asymmetries are generally more substantial than cortical thick-

ness asymmetries (Figure 1b) (Kong et al., 2018), we first compared

reproducibility rates between the hemispheric effects for these two

separate types of measure. We then calculated the Spearman correla-

tion between the “true” effect size and the reproducibility rate across

all 70 hemispheric effects, as well as across cortical thickness and sur-

face area hemispheric effects separately.

We also used a descriptive approach to show the relationship

between reproducibility and sample size. Specifically, to explore the

contribution of sample size of datasets to reproducibility, we calcu-

lated the reproducibility rate for each effect using a range of minimum

sample size thresholds of 15, 50, 100, 150, 200, 300, 400, and 500.

F IGURE 1 Reproducibility in

the absence of selective

reporting, estimated based on

outputs of the ENIGMA cortical

asymmetry project. (a) Sample

size distribution of the

99 datasets. (b) Effect size

distribution of the

70 hemispheric effects of

interest. (c) Reproducibility

distribution of the

70 hemispheric effects. The

reproducibility was assessed by

comparing each dataset in turn to

the meta-analytic effect from the

98 others, to avoid overlap (see

Methods). (d) Scatter plot of the

correlation between the

reproducibility and the effect

size. (e) Relations of

reproducibility, effect size and

dataset sample size. Each line

plots the mean and 95%

confidence interval for

reproducibility. We used the

meta-analytic effect size over all

99 datasets for visualization

purposes. The figure key shows

the types of cortical measure

(orange indicates surface area;

green indicates cortical

thickness), as well as groupings

by true effect sizes
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That is, in each case, the reproducibility rate was calculated based on

only the datasets with sample sizes above that threshold. This

resulted in different subgroups of datasets with varied minimum sam-

ple sizes: minimum size 15 as in the main analysis described above

(97 datasets in total), and then minimum size 50 (63 datasets), mini-

mum size 100 (37 datasets), minimum size 150 (25 datasets), minimum

size 200 (20 datasets), minimum size 300 (19 datasets), minimum size

400 (12 datasets), and minimum size 500 (7 datasets).

In addition, we used a descriptive approach to group the

70 effects based on their meta-analytic effect sizes (based on all

99 datasets): 0.0 ≤ d < 0.2, 0.2 ≤ d < 0.4, 0.4 ≤ d < 0.6, 0.6 ≤ d < 0.8,

0.8 ≤ d < 1.8, and summarized the reproducibility rate for each effect

size subgroup separately.

The R package pwr was used for calculating statistical power to

detect meta-analytic effect sizes in relation to dataset sample sizes.

2.5 | Reproducibility and data heterogeneity

The majority of the datasets (91 of 99) were processed using

FreeSurfer version 5.3. Therefore the meta-analytic effect sizes may

particularly reflect this software version, to the extent that different

versions of FreeSurfer can yield slightly different measures

(Gronenschild et al., 2012). We compared the reproducibility rates

of the 70 effects (again using the 1 dataset vs. 98 approach)

between the datasets using version 5.3 (91 datasets) versus those

using version 5.1 (6 datasets), using both the t-test and the nonpara-

metric Mann–Whitney test. (Note that the small number of datasets

using version 5.1 limited our ability to test whether FreeSurfer ver-

sion affects reproducibility.) In the same way, we also compared the

reproducibility rates of the 70 effects between the 63 datasets with

3T scanning versus the 29 datasets with 1.5T scanning, and

between the 18 datasets with maximum age 18 years versus the

36 datasets with minimum age 19 years. We also ran meta-analyses

for the subgroups separately (i.e., 3T/1.5T datasets, and child/adult

datasets) to estimate subgroup-specific “true” effects for calculating

reproducibility.

In addition, we investigated the potential relationships between

cortical regional variation in reproducibility and two regional proper-

ties: regional size (surface area) and measurement reliability, as a

proxy of image quality and region-specific performance of FreeSurfer.

In terms of variation in region size, the HCP dataset (see above) was

used to estimate the population averaged surface area of homolo-

gous pairs of left–right regions (i.e., the population mean [L + R]/2

per region). Spearman correlation across the 34 cortical regions was

then used to relate this regional size variable to reproducibility in the

ENIGMA results, separately for thickness and area asymmetry

effects. In terms of regional measurement reliability (as a proxy for

variation in regional image quality and region-specific performance

of FreeSurfer), we calculated the intraclass correlation coefficients

(ICC) for cortical thickness and surface area measures of each of the

34 regions using the test–retest dataset of 423 participants from the

BIG dataset (see above), and then examined the correlations

between ICCs and reproducibility rates across the 34 regions (sepa-

rately for thickness and surface area asymmetry effects).

2.6 | Data and code sharing

Data used in this study were published summary statistics from the

ENIGMA cortical asymmetry project (Kong et al., 2018). Data and

scripts for all analyses are available in GitHub (https://github.com/

Conxz/illusReproducibility). Additional data were from the Human

Connectome Project (https://www.humanconnectome.org/), and the

BIG dataset (http://cognomics.nl/).

3 | RESULTS

3.1 | Estimating reproducibility

There was an overall mean reproducibility rate of 63.2%, that is, on

average 63.2% of the single-dataset results were consistent with the

meta-analytic true effects (see Methods). A large variability of repro-

ducibility was observed across effects (SD = 22.9%, range from 22.2

to 97.0%) (Figure 1c). When using a more stringent significance

threshold of 0.05/70 for correcting multiple testing in the meta-

analytic results, the reproducibility remained similar (mean = 64.4%,

SD = 21.9%), which reflects that the large majority of effects were sig-

nificant regardless of this correction (63 significant before correction,

56 significant after correction).

For the whole hemisphere asymmetry effects (i.e., derived from

the average cortical thickness over each entire hemisphere, and the

total surface area of each hemisphere), the reproducibility rates across

datasets were 36.4 and 66.7%, respectively. For regionally specific

hemispheric effects, the reproducibility rate across datasets ranged

from 27.3 to 72.7% (mean = 48.7%, SD = 12.3%), and from 22.2 to

97.0% (mean = 78.4%, SD = 21.7%) for cortical thickness and surface

area measures, respectively (Figure 2). These findings show that

reproducibility is far from perfect, even without any publication bias

or potentially problematic practices such as p-hacking.

The overall reproducibility remained similar (62.7%, SD = 23.3%)

after excluding the two largest individual datasets (i.e., BIG and

QTIM), which might have had a disproportionate influence.

3.2 | Reproducibility, effect size, and sample size

As expected, regionally specific surface area measures (Figure 1b)

showed significantly higher reproducibility rates for hemispheric

effects than cortical thickness measures (Area vs. Thickness: t

[33] = 6.84, p = 3.11e−09; Mann–Whitney U = 985.0, p = 6.08e−07)

(Figure 1c), as hemispheric effects on surface area are generally larger

(Figure 2). As noted above, there were 63 significant effects and

7 nonsignificant effects with an uncorrected significance threshold of

0.05, in the meta-analysis of 99 datasets. The reproducibility rate of
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the significant effects ranged from 22.2 to 97% (mean = 63.8%,

SD = 23.7%), while the reproducibility rate of the nonsignificant

effects ranged from 42.4 to 84.8% (mean = 57.7%, SD = 13.7%).

Reproducibility showed a significant correlation with the “true”

effect size for both types of measure (all measures together, rho = .84,

p = 2.15e−19; thickness, rho = .52, p = .0017; area, rho = .94,

p = 4.28e−16) (Figure 1d). After excluding the 7 nonsignificant effects,

the correlation between reproducibility and effect size became more

significant (all measures together, rho = .97, p = 5.31e−40; thickness,

rho = .91, p = 7.94e−12; area, rho = .98, p = 3.72e−21). Note that

some meta-analytic effects very close to zero could show relatively

high reproducibility (Figure 1d), since in most individual datasets they

were also found to be low and nonsignificant as in the meta-analysis

(e.g., surface area asymmetry in superior parietal cortex, d = 0.002,

reproducibility rate = 84.8%, and cortical thickness asymmetry in the

pars opercularis, d = 0.02, reproducibility rate = 68.7%) (Figure 2).

Other nonsignificant meta-analytic effects showed relatively lower

reproducibility (Figure 1d), which may reflect uncontrolled sources of

dataset heterogeneity affecting regional measurement (see below and

Discussion).

With a corrected significance threshold of 0.05/70 for identifying

the “true” effects, there were 56 significant effects, and 14 nonsignifi-

cant effects. In this case, the reproducibility rate for significant effects

ranged from 30.3 to 97%, mean = 67.6%, SD = 22.3%, and for nonsig-

nificant effects from 25.3 to 84.8%, mean = 52.0%, SD = 14.4%.

When examining subgroups of effects and datasets according to

thresholds on effect size and sample size, we found that the reproduc-

ibility rate increased with the minimum sample size threshold, for each

specific range of effect size (Figure 1e). For example, for effects of

d ≥ 0.6, the reproducibility rate was higher than 90% even when

including the datasets with sample sizes as low as 15, while for effects

of 0.4 ≤ d < 0.6, a minimum sample size of 50 was needed to obtain a

reproducibility rate of 90%. Moreover, for effects of 0.2 ≤ d < 0.4, a

minimum sample size threshold of 100 started to make a

reproducibility rate of 80% achievable. In addition, the empirical find-

ings showed that it was impossible to obtain 70% reproducibility for

small effects of d < 0.2, even with a relatively large minimum sample

size threshold of 500.

We also examined the distributions of per-dataset effect sizes in

relation to dataset sample sizes, and the expected power function to

detect each meta-analytic effect (Figure S1). There was considerable

variation across datasets around the meta-analytic effect sizes, and as

expected, this variation generally decreased as the sample size

increased (Figure S1). However, some of the larger datasets could also

yield effects that were discrepant with the corresponding meta-

analytic effects, which again may relate to uncontrolled heterogeneity

affecting these datasets (see below and Discussion).

3.3 | Reproducibility and data heterogeneity

For subgroups of datasets processed with different versions of

FreeSurfer (version 5.3 in 91 datasets and version 5.1 in 6 datasets)

there was no significant difference in reproducibility of the 70 effects:

mean reproducibility rate 62.8% (SD = 22.8%) for version 5.3 and

64.3% (SD = 32.8%) for version 5.1 (t = 0.31, p = 0.76; Mann–Whitney

U = 2,693.0, p = .31). Similarly, no significant difference was found

between the datasets with scanner field strengths of 3T (63 datasets)

versus 1.5T (29 datasets): mean reproducibility rate 59.6% (SD = 23.3%)

for 3T datasets and 66.8% (SD = 25.6%) for 1.5T datasets (t = 1.73,

p = .09; Mann–Whitney U = 2,920.0, p = .503). Furthermore, there

was no significant difference in the reproducibility rate of the

70 effects between the 18 datasets with maximum age 18 years

(mean reproducibility 59.7%, SD = 24.7%) versus the 36 datasets with

minimum age 19 years (mean reproducibility 61.9%, SD = 24.6%)

(t = −0.53, p = .60, Mann–Whitney U = 2,294.5, p = .52).

In addition, there were no significant differences of sample size

between the subgroups of datasets (version 5.3 vs. 5.1, t = −0.29,

F IGURE 2 Region-wise effect sizes and reproducibility rates of hemispheric asymmetry effects. We used the meta-analytic effect sizes over

all 99 datasets for visualization purposes. Effect sizes are in Cohen's d
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p = .77; Mann–Whitney U = 203, p = .30:3T vs. 1.3T, t = −0.78,

p = .44; Mann–Whitney U = 733.0, p = .13: Childhood/adult,

t = −1.41, p = .17; Mann–Whitney U = 300.5, p = .67), so that these

factors were not obviously confounded with dataset sample size.

We further ran meta-analyses for the subgroups separately

(i.e., 3T/1.5T datasets, and child/adult datasets) to estimate subgroup-

specific “true” effects for calculating reproducibility, in case the

reduced heterogeneity within subsets might boost reproducibility,

although this inevitably resulted in lower numbers of datasets within

subgroups, compared to the main analysis. Reproducibility of these

subgroup-specific meta-analysis effects within the subgroups

remained similar to the main analysis (3T: 60.6%, SD = 23.0%; 1.5T:

69.1%, SD = 23.0%; Child: 61.7%, SD = 23.3%; Adult: 63.8%,

SD = 23.0%).

Cortical regional size was significantly correlated across the

34 regions with the effect size of surface area asymmetries (rho = .45,

p = .0073), but not with the effect size of thickness asymmetries, and

not with the reproducibility rates for either thickness or area asymme-

try effects (ps > .15; Figure 3a). In terms of measurement reliability

(as a proxy for variation in regional image quality and region-specific

performance of FreeSurfer) based on 423 twice-scanned participants,

there were no significant correlations between regional measure ICCs

and either asymmetry effect sizes or reproducibility rates across the

34 regions (ps > .15; Figure 3b). One may ask whether it is useful to

apply regional reliability measures from one study to another. We

investigated the correlations between our reliability measures and

those reported in a previous study using an independent scan-rescan

dataset (Iscan et al., 2015). There were high correlations between the

two studies for both thickness (r = .75, p < .0005) and area measures

(r = .92, p < .0005). These high correlations indicate stable inter-

regional differences of measurement reliability across studies.

Taken together, our results indicate that the potential heteroge-

neity factors of FreeSurfer version, scanner field strength, participant

age range in childhood versus adulthood, cortical region size, and

regional measurement reliability contribute little to differences in the

reproducibility of asymmetry effects, for either cortical thickness or

surface area.

4 | DISCUSSION

In this study, we revisited the summary statistics from a worldwide

collaborative neuroscience project that mapped cerebral cortical

asymmetry (Kong et al., 2018), to illustrate the reproducibility of real-

istic biological effects in the absence of p hacking or publishing bias,

based on heterogeneous neuroscience data and typically-used sample

sizes. Overall, reproducibility was limited, with a mean rate across all

effects = 63.2%, lowest reproducibility rate = 22.2%. As expected,

sample size and effect size were the primary drivers of reproducibility,

while perhaps surprisingly, heterogeneity factors were of limited

influence.

Among various factors, low statistical power is now well under-

stood to contribute to the reproducibility problem (Button

et al., 2013; Ioannidis, 2005). However, low power was only ranked

number three behind “Selective reporting” and “Pressure to publish” in a

recent Nature survey on contributing factors to irreproducible

research (Baker, 2016). In an idealized situation, where there is no

selective reporting or pressure to publish, we found that the repro-

ducibility was still limited. As expected, the reproducibility rate

increased with the true effect size, as well as the sample size of

datasets, which together contribute to statistical power. Clearly, to

avoid poor reproducibility, a relatively larger sample size is necessary

than was available within many of the individual datasets of this

study. For example, to obtain a reproducibility rate of 80% for a true

effect size of around d = 0.4, the sample sizes of individual datasets

needed be larger than 100, that is, greater than the median sample

F IGURE 3 Scatter plots for the relationships between regional sizes, hemispheric asymmetry effect sizes, and reproducibility rates of the

asymmetries. (a) Plots for region sizes. (b) Plots for measurement reliability (intraclass correlation coefficient, ICC). Effect sizes are in Cohen's d.

Unit: thickness = mm, area = mm2, region size = mm2
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size in this study of 99 datasets. There is therefore substantial room

to improve reproducibility by increasing sample sizes, even when

using currently available methods. Note that the analysis of brain

asymmetry involves an inherently paired sample design (i.e., paired left

and right measures within subjects), but that the overall picture and

principles illustrated here are broadly applicable.

Button et al. (2013) showed that the average statistical power of

studies in the neurosciences is low (i.e., around 21%), which is

expected to cause low reproducibility, both through false positive and

false negative findings. For example, many fMRI studies have tradi-

tionally been performed using 10–20 participants (Desmond &

Glover, 2002). Our observation that reproducibility is strongly

influenced by sample size was expected, and in line with the PPV cal-

culation (Button et al., 2013) mentioned in the Introduction. However,

here we have demonstrated this empirically in a situation where a

priori knowledge of the statistical power (1 − β) and the prestudy

odds (R) was not necessary, and in a real-world setting, that is, with

similar heterogeneity to the field in general, as regards factors such as

scanner field strengths, software versions, demographic differences,

and regional differences in measurement reliability. Despite all of this

heterogeneity, the primary driver of reproducibility remained the sam-

ple size in relation to the effect size, which is an important take-home

message for the field. For example, if the expected effect size

(i.e., Cohen's d) in a paired-measure MRI study is below 0.2, then stud-

ies with 500 subjects are still not expected to achieve a reproducibility

rate of 80%. Consistent with this, a recent study performed an empiri-

cal examination of the replicability of “structural brain behavior” asso-

ciations using a permutation-based approach (again without any of

problems of selective reporting), and concluded that it is relatively

unlikely to find an association between behavioral traits and brain

morphology with a sample size of less than 500 (replication effect

sizes were up to 0.4 [Pearson's r]) (Kharabian Masouleh, Eickhoff,

Hoffstaedter, Genon, & Alzheimer's Disease Neuroimaging, 2019).

A reproducibility rate of 36% was reported by the Open Science

Framework for 100 findings from psychological studies (Aarts

et al., 2015), and a reproducibility rate of 54% for 28 classic findings

in psychological science was reported by a more recent Many Lab

project (R. Klein, Vianello, et al., 2018). Such poor reproducibility has

been partly attributed to reporting bias and potentially problematic

practices such as selective reporting of outcomes (Aarts et al., 2015;

Baker, 2016; Bakker et al., 2012; Ioannidis, 2005, 2008; Ioannidis

et al., 2014; John et al., 2012; Simmons et al., 2011). While we do not

dispute the likely relevance of these factors, it is interesting to note

that the mean reproducibility rate in the present study, where no such

factors were in play, was only 63.2%. As the true effect sizes in the

present study ranged from zero to large (Cohen's d up to 1.8), in this

respect they can be taken as broadly comparable to those in the

human neuroscience and psychology literature, although the effect

size distribution within this range might not be representative of the

literature at large.

Varying demographic composition of datasets is another factor

likely to influence the reproducibility of findings in human neurosci-

ence, even for such fundamental processes as age-related change in

neural structure (LeWinn, Sheridan, Keyes, Hamilton, &

McLaughlin, 2017). However, one study that investigated variation in

replicability suggested that the contribution of sample heterogeneity

can also be modest (R. Klein, Vianello, et al., 2018). The datasets of

the current study differed widely in their age ranges and distributions

(Table S1). However, we found no significant difference of reproduc-

ibility rates between childhood and adult datasets (thresholded at age

18 years), which suggests that this factor was of limited importance.

In terms of technical heterogeneity too, there was variation between

datasets in terms of scanner field strength and FreeSurfer software

version (see Table S1), but again we found that these factors did not

significantly relate to reproducibility rates. One reason could be that

these factors primarily affect bilateral measures of cortical thickness

and surface area, that is, mostly equally for the two hemispheres, such

that hemispheric asymmetry effects are relatively robust to these fac-

tors. Thus the focus on brain asymmetry may have obscured factors

affecting both hemispheres equally. Note that our ability to detect a

difference in reproducibility between different versions of FreeSurfer

was limited, as 91 out of 99 datasets had used version 5.3.

We acknowledge that there remains extensive heterogeneity in

other factors such as scanner models and acquisition parameters,

which we were not able to consider in this study because variation

was too fragmented across the 99 datasets to do meaningful analysis

of how they affected reproducibility. Recruitment criteria and strate-

gies were heterogeneous across datasets too, for example whether

subjects were selected as healthy controls for disorder case–control

studies, or recruited in the context of unselected population studies

(we did not use data from case participants from case–control

datasets for the present study). Given this heterogeneity, some “non-

replication” of effects could be quite appropriate in certain datasets

that comprise specific subgroups or methodological variants, in which

particular effects might be of less relevance. Even some of the rela-

tively larger individual datasets could sometimes show markedly dif-

ferent effects from the meta-analysis (Figure S1). This was likely

caused by uncontrolled heterogeneity factors affecting those specific

datasets.

Although heterogeneity may have contributed to the overall

63.2% reproducibility rate in this study, we regard it as a strength

rather than limitation, as we wished the meta-analytic effect sizes and

reproducibility rates to be valid in the context of the heterogeneity

typical of the field. Heterogeneity was not therefore an overarching

problem for the present study, but rather fitted its purpose. Nonethe-

less, future studies may examine how different aspects of MRI dataset

heterogeneity influence reproducibility, to gain further insights into

the problem that the neuroscience community is facing. It is important

to note that, while conceptually related to heterogeneity, the repro-

ducibility rate is also influenced by sample and effect sizes

(as discussed above), and as such provides a useful way of examining

the replicability of effects under real world conditions.

Neuroimaging studies can involve considerable flexibility regard-

ing data processing and statistical analysis, while inconsistent strate-

gies can also contribute to poor reproducibility and contrasting

conclusions (Botvinik-Nezer et al., 2020; Pauli et al., 2016). For the
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present study, the pipeline for MRI quality control, processing and

analysis was harmonized, so that the impact of this aspect was neces-

sarily limited. Therefore our reproducibility rates may be somewhat

idealized, considering how the field typically operates, that is, with dif-

ferent researchers asking similar questions, but in different datasets

and using different strategies. In other words, the reproducibility

would likely be worse when the processing pipelines and analysis

strategies are different.

Another important aspect affecting reproducibility in the litera-

ture may be failure to use blinded designs in primary studies, for

example so that researchers know the case–control status of partici-

pants while processing their data, and inadvertently introduce bias.

This is less likely to be relevant for studies based on automated

processing of human brain MRI data, unless there would be bias dur-

ing visual quality control. As regards our study specifically, the visual

quality control of FreeSurfer segmentations and parcellations was not

done with respect to eventual asymmetry measures, and we have no

reason to imagine that the inspection of left and right-hemisphere

images was approached differently, on average.

The lowest reproducibility was 22.2%, for a small but significant

meta-analytic effect of d = 0.052 (cortical area asymmetry in the lin-

gual gyrus). As discussed above, such low reproducibility is likely due

to limited power to detect such small effects, in many of the datasets.

There were also seven nonsignificant meta-analytic effects, with best

estimate effect sizes very close to zero, which were considered to

have been reproduced when a given dataset also showed no signifi-

cant effect. With a significance threshold of 0.05/70 for identifying

“true” effects in the context of multiple testing of 70 cortical mea-

sures, there were 56 significant effects, and 14 nonsignificant effects.

Some of the nonsignificant meta-analytic effects with the lowest

effect sizes showed high reproducibility, as nonsignificant effects.

However, as the reproducibility rates of some nonsignificant meta-

analytic effects were lower than expected at the alpha level 0.05

(i.e., significant asymmetries were measured in some individual

datasets even when the meta-analysis effect was close to zero and

nonsignificant), then uncontrolled dataset heterogeneity, such as tech-

nical variation affecting asymmetry measurement, is likely to have

been involved. Our observations on the reproducibility of nonsignifi-

cant effects highlight the importance of reporting negative findings in

publications.

We used ICC of regional thickness and surface area measures

from 423 twice-scanned participants to understand whether inter-

regional differences in imaging quality might relate to inter-regional

differences in reproducibility. There were no significant correlations

for either thickness or surface area measures, which is consistent with

the relatively high overall reliability of these regional measures. There

were also no significant correlations between reproducibility and

regional size. These observations again underline that dataset size and

true effect size were the main drivers of reproducibility identifiable in

the present study. Nonetheless, measurement reliability has previ-

ously been shown to play a role in reproducibility, given a specific,

true effect size and sample size (Zuo, Xu, & Milham, 2019). A limita-

tion of the present study was the focus on cortical asymmetry effects

for cortical gray matter thickness and surface area measures, but

other MRI-based metrics will likely differ in the degree to which mea-

surement reliability affects reproducibility. Therefore we still recom-

mend careful assessment and optimization of measurement reliability

in MRI studies.

5 | CONCLUSION

Reproducing results is critical for accumulating knowledge in the sci-

entific community. In this study, we revisited the outputs of a global

collaborative project for mapping cortical brain asymmetry (Kong

et al., 2018), to empirically demonstrate reproducibility in a real-world

setting as regards dataset heterogeneity and sample sizes, but in the

absence of p-hacking or reporting bias. The results indicated that

there is substantial room to improve reproducibility using current neu-

roimaging methods, even in the absence of p-hacking or reporting

bias, because dataset sample size and effect size remained the primary

drivers of reproducibility, even in the presence of substantial hetero-

geneity across datasets. Despite our focus on gray matter

asymmetries, this picture is likely to hold true to some extent across

the field of brain imaging in general. Further studies will be needed to

evaluate reproducibility in more contexts, in terms of imaging modal-

ity, processing and measurement techniques, and participant demo-

graphics. Our findings suggest that improved reproducibility can be

achieved primarily through increasing statistical power, either through

increasing the sample sizes of individual datasets, or via collaborations

between researchers, for example in consortia such as ENIGMA

(Thompson et al., 2014, 2020).
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